您当前的位置:首页 > IT编程 > python
| C语言 | Java | VB | VC | python | Android | TensorFlow | C++ | oracle | 学术与代码 | cnn卷积神经网络 | gnn | 图像修复 | Keras | 数据集 | Neo4j | 自然语言处理 | 深度学习 | 医学CAD | 医学影像 | 超参数 | pointnet | pytorch | 异常检测 | Transformers | 情感分类 | 知识图谱 |

自学教程:tensorflow2 自定义损失函数使用的隐藏坑

51自学网 2021-10-30 22:25:02
  python
这篇教程tensorflow2 自定义损失函数使用的隐藏坑写得很实用,希望能帮到您。

Keras的核心原则是逐步揭示复杂性,可以在保持相应的高级便利性的同时,对操作细节进行更多控制。当我们要自定义fit中的训练算法时,可以重写模型中的train_step方法,然后调用fit来训练模型。

这里以tensorflow2官网中的例子来说明:

import numpy as npimport tensorflow as tffrom tensorflow import kerasx = np.random.random((1000, 32))y = np.random.random((1000, 1))class CustomModel(keras.Model):    tf.random.set_seed(100)    def train_step(self, data):        # Unpack the data. Its structure depends on your model and        # on what you pass to `fit()`.        x, y = data        with tf.GradientTape() as tape:            y_pred = self(x, training=True)  # Forward pass            # Compute the loss value            # (the loss function is configured in `compile()`)            loss = self.compiled_loss(y, y_pred, regularization_losses=self.losses)        # Compute gradients        trainable_vars = self.trainable_variables        gradients = tape.gradient(loss, trainable_vars)        # Update weights        self.optimizer.apply_gradients(zip(gradients, trainable_vars))        # Update metrics (includes the metric that tracks the loss)        self.compiled_metrics.update_state(y, y_pred)        # Return a dict mapping metric names to current value        return {m.name: m.result() for m in self.metrics}    # Construct and compile an instance of CustomModelinputs = keras.Input(shape=(32,))outputs = keras.layers.Dense(1)(inputs)model = CustomModel(inputs, outputs)model.compile(optimizer="adam", loss=tf.losses.MSE, metrics=["mae"])# Just use `fit` as usualmodel.fit(x, y, epochs=1, shuffle=False)32/32 [==============================] - 0s 1ms/step - loss: 0.2783 - mae: 0.4257 <tensorflow.python.keras.callbacks.History at 0x7ff7edf6dfd0>

这里的loss是tensorflow库中实现了的损失函数,如果想自定义损失函数,然后将损失函数传入model.compile中,能正常按我们预想的work吗?

答案竟然是否定的,而且没有错误提示,只是loss计算不会符合我们的预期。

def custom_mse(y_true, y_pred):    return tf.reduce_mean((y_true - y_pred)**2, axis=-1)a_true = tf.constant([1., 1.5, 1.2])a_pred = tf.constant([1., 2, 1.5])custom_mse(a_true, a_pred)<tf.Tensor: shape=(), dtype=float32, numpy=0.11333332>tf.losses.MSE(a_true, a_pred)<tf.Tensor: shape=(), dtype=float32, numpy=0.11333332>

以上结果证实了我们自定义loss的正确性,下面我们直接将自定义的loss置入compile中的loss参数中,看看会发生什么。

my_model = CustomModel(inputs, outputs)my_model.compile(optimizer="adam", loss=custom_mse, metrics=["mae"])my_model.fit(x, y, epochs=1, shuffle=False)32/32 [==============================] - 0s 820us/step - loss: 0.1628 - mae: 0.3257<tensorflow.python.keras.callbacks.History at 0x7ff7edeb7810>

我们看到,这里的loss与我们与标准的tf.losses.MSE明显不同。这说明我们自定义的loss以这种方式直接传递进model.compile中,是完全错误的操作。

正确运用自定义loss的姿势是什么呢?下面揭晓。

loss_tracker = keras.metrics.Mean(name="loss")mae_metric = keras.metrics.MeanAbsoluteError(name="mae")class MyCustomModel(keras.Model):    tf.random.set_seed(100)    def train_step(self, data):        # Unpack the data. Its structure depends on your model and        # on what you pass to `fit()`.        x, y = data        with tf.GradientTape() as tape:            y_pred = self(x, training=True)  # Forward pass            # Compute the loss value            # (the loss function is configured in `compile()`)            loss = custom_mse(y, y_pred)            # loss += self.losses        # Compute gradients        trainable_vars = self.trainable_variables        gradients = tape.gradient(loss, trainable_vars)        # Update weights        self.optimizer.apply_gradients(zip(gradients, trainable_vars))                # Compute our own metrics        loss_tracker.update_state(loss)        mae_metric.update_state(y, y_pred)        return {"loss": loss_tracker.result(), "mae": mae_metric.result()}        @property    def metrics(self):        # We list our `Metric` objects here so that `reset_states()` can be        # called automatically at the start of each epoch        # or at the start of `evaluate()`.        # If you don't implement this property, you have to call        # `reset_states()` yourself at the time of your choosing.        return [loss_tracker, mae_metric]    # Construct and compile an instance of CustomModelinputs = keras.Input(shape=(32,))outputs = keras.layers.Dense(1)(inputs)my_model_beta = MyCustomModel(inputs, outputs)my_model_beta.compile(optimizer="adam")# Just use `fit` as usualmy_model_beta.fit(x, y, epochs=1, shuffle=False)32/32 [==============================] - 0s 960us/step - loss: 0.2783 - mae: 0.4257<tensorflow.python.keras.callbacks.History at 0x7ff7eda3d810>

终于,通过跳过在 compile() 中传递损失函数,而在 train_step 中手动完成所有计算内容,我们获得了与之前默认tf.losses.MSE完全一致的输出,这才是我们想要的结果。

总结一下,当我们在模型中想用自定义的损失函数,不能直接传入fit函数,而是需要在train_step中手动传入,完成计算过程。

到此这篇关于tensorflow2 自定义损失函数使用的隐藏坑的文章就介绍到这了,更多相关tensorflow2 自定义损失函数内容请搜索51zixue.net以前的文章或继续浏览下面的相关文章希望大家以后多多支持51zixue.net!


Python 根据相邻关系还原数组的两种方式(单向构造和双向构造)
python 中open文件路径的选择问题解析
万事OK自学网:51自学网_软件自学网_CAD自学网自学excel、自学PS、自学CAD、自学C语言、自学css3实例,是一个通过网络自主学习工作技能的自学平台,网友喜欢的软件自学网站。