您当前的位置:首页 > IT编程 > python
| C语言 | Java | VB | VC | python | Android | TensorFlow | C++ | oracle | 学术与代码 | cnn卷积神经网络 | gnn | 图像修复 | Keras | 数据集 | Neo4j | 自然语言处理 | 深度学习 | 医学CAD | 医学影像 | 超参数 | pointnet | pytorch | 异常检测 | Transformers | 情感分类 | 知识图谱 |

自学教程:Python中rapidjson参数校验实现

51自学网 2021-10-30 22:25:16
  python
这篇教程Python中rapidjson参数校验实现写得很实用,希望能帮到您。

前言

在使用Django框架开发前后端分离的项目时,通常需要对前端传递过来的参数进行校验,校验的方式有多种,可以使用drf进行校验,也可以使用json进行校验,本文介绍在Python中rapidjson的基本使用以及如何进行参数校验。

rapidjson简介和安装

rapidjson是一个性能非常好的C++ JSON解析器和序列化库,它被包装成了Python3的扩展包,就是说在Python3中可以使用rapidjson进行数据的序列化和反序列化操作并且可以对参数进行校验,非常方便好用。

rapidjson安装命令:pip install python-rapidjson

rapidjson基本使用

rapidjson和json模块在基本使用方法上一致的,只不过rapidjson在某些参数方面和json模块不兼容,这些参数并不常用,这里不做过多介绍,详情可参照rapidjson官方文档。基本使用介绍两个序列化的方法dump/dumps,反序列化的load/loads使用json模块的即可。

dumps & dump这两个方法都是将Python实例对象序列化为JSON格式的字符串,用法和参数大致相同,dump方法比dumps方法多了一个必要的file_like参数。

dumps() 方法

该方法返回的结果是一个Python 字符串实例。参数非常多,这里只介绍经常使用的三个参数。

rapidjson.dumps(obj, *, skipkeys=False, ensure_ascii=True, write_mode=WM_COMPACT, indent=4, default=None, sort_keys=False, number_mode=None, datetime_mode=None, uuid_mode=None, bytes_mode=BM_UTF8, iterable_mode=IM_ANY_ITERABLE, mapping_mode=MM_ANY_MAPPING, allow_nan=True)

skipkeys

该参数表示是否跳过不可用的字典的key进行序列化,如果默认为False,如果修改为True字典的key如果不属于基本数据类型(str int float bool None)之一就会跳过该key而不会抛出TypeError的异常。

import rapidjsonfrom pprint import pprintdic = {    True: False,    (0,): 'python'}res = rapidjson.dumps(dic)pprint(res)  # TypeError: {True: False, (0,): 'python'} is not JSON serializableres = rapidjson.dumps(dic, skipkeys=True)pprint(res)  # '{}'

ensure_ascii

该参数表示序列化的结果是否只包含ASCII字符,默认值是True,将Python实例序列化后所有的非ASCII码的字符都会被转义,如果将该参数的值修改为False,增会将字符原样输出。

dic = {    'name': '丽丽',    'name1': 'lili'}res = rapidjson.dumps(dic)pprint(res)   # '{"name":"//u4E3D//u4E3D","name1":"lili"}'res = rapidjson.dumps(dic, ensure_ascii=False)pprint(res)  # '{"name":"丽丽","name1":"lili"}'

sort_keys

该参数表示序列化时是否将字典的key按照字母进行排序。默认是False,如果修改为True,字典序列化得到的结果就是按照字典的key的字母顺序进行排序的。

dic = {    'name': '丽丽',    'age': '10'}res = rapidjson.dumps(dic, ensure_ascii=False, sort_keys=True)pprint(res)  # '{"age":"10","name":"丽丽"}'

dump()方法

该方法和dumps方法非常类似,不同的是该方法需要一个额外的必须的参数 - 一个file-like的可写流式对象,比如文件对象,将第一个参数obj进行序列化写入可写的流式对象中。

rapidjson.dump(obj, stream, *, skipkeys=False, ensure_ascii=True, write_mode=WM_COMPACT, indent=4, default=None, sort_keys=False, number_mode=None, datetime_mode=None, uuid_mode=None, bytes_mode=BM_UTF8, iterable_mode=IM_ANY_ITERABLE, mapping_mode=MM_ANY_MAPPING, chunk_size=65536, allow_nan=True)

下面是该方法的基本使用:

# 写入文件dic = {    'name': '丽丽',    'age': '10'}f = open('1.py', 'w', encoding='utf8')res = rapidjson.dump(dic, f)pprint(res)# 或者下面这种用法import iostream = io.BytesIO()dump('bar', stream)print(stream.getvalue())  # b'"bar"'

Validator class

rapidjson中的Validator类可以用来做参数校验。Validator的参数是JSON schema,当我们需要知道JSON数据中预期的字段以及值的表示方式时,这就是JSON Schema的用武之地,是描述JSON数据结构的一种声明格式,也可以通俗的理解为是参数的校验规则。如果JSON schema是不可用的JSON格式的数据,就会抛出JSONDecodeError的异常。

类的参数就是校验规则,如果给定的JSON数据没有通过校验就会抛出ValidationError异常,异常包括三个部分,分别是错误的类型、校验的规则以及在JSON字符串中错误出现的位置。

import rapidjsonfrom pprint import pprintvalidate = rapidjson.Validator('{"required": ["a", "b"]}')  # 表示a和b这两个参数是必须的validate('{"a": null, "b": 1}')  # 符合规则validate('{"a": null, "c": false}')  # rapidjson.ValidationError: ('required', '#', '#')
validate = rapidjson.Validator('{"type": "array",'  # 参数类型是array                     ' "items": {"type": "string"},'  # array中的每个元素类型是string                     ' "minItems": 1}')  # array中元素数量最少为1validate('["foo", "bar"]')  # 符合规则validate('[]')  #  rapidjson.ValidationError: ('minItems', '#', '#')

关于JSON schema的更多参数校验规则以及定义规范可以参考*JSON schema官方文档*,下述是一种JSON schema格式仅供参考:

LOGIN_SCHEMA = {    "type": "object",    "properties": {        "token": "string",        "number": "integer"    },    "required": ["token"],}   }validate = rapidjson.Validator(rapidjson.dumps(LOGIN_SCHEMA))data = {    'token': 'python',    'number': 10}validate(rapidjson.dumps(data))

到此这篇关于Python中rapidjson参数校验实现的文章就介绍到这了,更多相关Python rapidjson参数校验内容请搜索51zixue.net以前的文章或继续浏览下面的相关文章希望大家以后多多支持51zixue.net!


Python中scrapy下载保存图片的示例
Pandas 稀疏数据结构的实现
万事OK自学网:51自学网_软件自学网_CAD自学网自学excel、自学PS、自学CAD、自学C语言、自学css3实例,是一个通过网络自主学习工作技能的自学平台,网友喜欢的软件自学网站。