您当前的位置:首页 > IT编程 > python
| C语言 | Java | VB | VC | python | Android | TensorFlow | C++ | oracle | 学术与代码 | cnn卷积神经网络 | gnn | 图像修复 | Keras | 数据集 | Neo4j | 自然语言处理 | 深度学习 | 医学CAD | 医学影像 | 超参数 | pointnet | pytorch | 异常检测 | Transformers | 情感分类 | 知识图谱 |

自学教程:手把手教你实现PyTorch的MNIST数据集

51自学网 2021-10-30 22:26:29
  python
这篇教程手把手教你实现PyTorch的MNIST数据集写得很实用,希望能帮到您。

概述

MNIST 包含 0~9 的手写数字, 共有 60000 个训练集和 10000 个测试集. 数据的格式为单通道 28*28 的灰度图.

获取数据

def get_data():    """获取数据"""    # 获取测试集    train = torchvision.datasets.MNIST(root="./data", train=True, download=True,                                       transform=torchvision.transforms.Compose([                                           torchvision.transforms.ToTensor(),  # 转换成张量                                           torchvision.transforms.Normalize((0.1307,), (0.3081,))  # 标准化                                       ]))    train_loader = DataLoader(train, batch_size=batch_size)  # 分割测试集    # 获取测试集    test = torchvision.datasets.MNIST(root="./data", train=False, download=True,                                      transform=torchvision.transforms.Compose([                                          torchvision.transforms.ToTensor(),  # 转换成张量                                          torchvision.transforms.Normalize((0.1307,), (0.3081,))  # 标准化                                      ]))    test_loader = DataLoader(test, batch_size=batch_size)  # 分割训练    # 返回分割好的训练集和测试集    return train_loader, test_loader

网络模型

class Model(torch.nn.Module):    def __init__(self):        super(Model, self).__init__()        # 卷积层        self.conv1 = torch.nn.Conv2d(1, 32, kernel_size=(3, 3), stride=(1, 1))        self.conv2 = torch.nn.Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1))        # Dropout层        self.dropout1 = torch.nn.Dropout(0.25)        self.dropout2 = torch.nn.Dropout(0.5)        # 全连接层        self.fc1 = torch.nn.Linear(9216, 128)        self.fc2 = torch.nn.Linear(128, 10)    def forward(self, x):        """前向传播"""                # [b, 1, 28, 28] => [b, 32, 26, 26]        out = self.conv1(x)        out = F.relu(out)                # [b, 32, 26, 26] => [b, 64, 24, 24]        out = self.conv2(out)        out = F.relu(out)        # [b, 64, 24, 24] => [b, 64, 12, 12]        out = F.max_pool2d(out, 2)        out = self.dropout1(out)                # [b, 64, 12, 12] => [b, 64 * 12 * 12] => [b, 9216]        out = torch.flatten(out, 1)                # [b, 9216] => [b, 128]        out = self.fc1(out)        out = F.relu(out)        # [b, 128] => [b, 10]        out = self.dropout2(out)        out = self.fc2(out)        output = F.log_softmax(out, dim=1)        return output

train 函数

def train(model, epoch, train_loader):    """训练"""    # 训练模式    model.train()    # 迭代    for step, (x, y) in enumerate(train_loader):        # 加速        if use_cuda:            model = model.cuda()            x, y = x.cuda(), y.cuda()        # 梯度清零        optimizer.zero_grad()        output = model(x)        # 计算损失        loss = F.nll_loss(output, y)        # 反向传播        loss.backward()        # 更新梯度        optimizer.step()        # 打印损失        if step % 50 == 0:            print('Epoch: {}, Step {}, Loss: {}'.format(epoch, step, loss))

test 函数

def test(model, test_loader):    """测试"""        # 测试模式    model.eval()    # 存放正确个数    correct = 0    with torch.no_grad():        for x, y in test_loader:            # 加速            if use_cuda:                model = model.cuda()                x, y = x.cuda(), y.cuda()            # 获取结果            output = model(x)            # 预测结果            pred = output.argmax(dim=1, keepdim=True)            # 计算准确个数            correct += pred.eq(y.view_as(pred)).sum().item()    # 计算准确率    accuracy = correct / len(test_loader.dataset) * 100    # 输出准确    print("Test Accuracy: {}%".format(accuracy))

main 函数

def main():    # 获取数据    train_loader, test_loader = get_data()        # 迭代    for epoch in range(iteration_num):        print("/n================ epoch: {} ================".format(epoch))        train(network, epoch, train_loader)        test(network, test_loader)

完整代码:

import torchimport torchvisionimport torch.nn.functional as Ffrom torch.utils.data import DataLoaderclass Model(torch.nn.Module):    def __init__(self):        super(Model, self).__init__()        # 卷积层        self.conv1 = torch.nn.Conv2d(1, 32, kernel_size=(3, 3), stride=(1, 1))        self.conv2 = torch.nn.Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1))        # Dropout层        self.dropout1 = torch.nn.Dropout(0.25)        self.dropout2 = torch.nn.Dropout(0.5)        # 全连接层        self.fc1 = torch.nn.Linear(9216, 128)        self.fc2 = torch.nn.Linear(128, 10)    def forward(self, x):        """前向传播"""                # [b, 1, 28, 28] => [b, 32, 26, 26]        out = self.conv1(x)        out = F.relu(out)                # [b, 32, 26, 26] => [b, 64, 24, 24]        out = self.conv2(out)        out = F.relu(out)        # [b, 64, 24, 24] => [b, 64, 12, 12]        out = F.max_pool2d(out, 2)        out = self.dropout1(out)                # [b, 64, 12, 12] => [b, 64 * 12 * 12] => [b, 9216]        out = torch.flatten(out, 1)                # [b, 9216] => [b, 128]        out = self.fc1(out)        out = F.relu(out)        # [b, 128] => [b, 10]        out = self.dropout2(out)        out = self.fc2(out)        output = F.log_softmax(out, dim=1)        return output# 定义超参数batch_size = 64  # 一次训练的样本数目learning_rate = 0.0001  # 学习率iteration_num = 5  # 迭代次数network = Model()  # 实例化网络print(network)  # 调试输出网络结构optimizer = torch.optim.Adam(network.parameters(), lr=learning_rate)  # 优化器# GPU 加速use_cuda = torch.cuda.is_available()print("是否使用 GPU 加速:", use_cuda)def get_data():    """获取数据"""    # 获取测试集    train = torchvision.datasets.MNIST(root="./data", train=True, download=True,                                       transform=torchvision.transforms.Compose([                                           torchvision.transforms.ToTensor(),  # 转换成张量                                           torchvision.transforms.Normalize((0.1307,), (0.3081,))  # 标准化                                       ]))    train_loader = DataLoader(train, batch_size=batch_size)  # 分割测试集    # 获取测试集    test = torchvision.datasets.MNIST(root="./data", train=False, download=True,                                      transform=torchvision.transforms.Compose([                                          torchvision.transforms.ToTensor(),  # 转换成张量                                          torchvision.transforms.Normalize((0.1307,), (0.3081,))  # 标准化                                      ]))    test_loader = DataLoader(test, batch_size=batch_size)  # 分割训练    # 返回分割好的训练集和测试集    return train_loader, test_loaderdef train(model, epoch, train_loader):    """训练"""    # 训练模式    model.train()    # 迭代    for step, (x, y) in enumerate(train_loader):        # 加速        if use_cuda:            model = model.cuda()            x, y = x.cuda(), y.cuda()        # 梯度清零        optimizer.zero_grad()        output = model(x)        # 计算损失        loss = F.nll_loss(output, y)        # 反向传播        loss.backward()        # 更新梯度        optimizer.step()        # 打印损失        if step % 50 == 0:            print('Epoch: {}, Step {}, Loss: {}'.format(epoch, step, loss))def test(model, test_loader):    """测试"""    # 测试模式    model.eval()    # 存放正确个数    correct = 0    with torch.no_grad():        for x, y in test_loader:            # 加速            if use_cuda:                model = model.cuda()                x, y = x.cuda(), y.cuda()            # 获取结果            output = model(x)            # 预测结果            pred = output.argmax(dim=1, keepdim=True)            # 计算准确个数            correct += pred.eq(y.view_as(pred)).sum().item()    # 计算准确率    accuracy = correct / len(test_loader.dataset) * 100    # 输出准确    print("Test Accuracy: {}%".format(accuracy))def main():    # 获取数据    train_loader, test_loader = get_data()    # 迭代    for epoch in range(iteration_num):        print("/n================ epoch: {} ================".format(epoch))        train(network, epoch, train_loader)        test(network, test_loader)if __name__ == "__main__":    main()

输出结果:

Model(
  (conv1): Conv2d(1, 32, kernel_size=(3, 3), stride=(1, 1))
  (conv2): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1))
  (dropout1): Dropout(p=0.25, inplace=False)
  (dropout2): Dropout(p=0.5, inplace=False)
  (fc1): Linear(in_features=9216, out_features=128, bias=True)
  (fc2): Linear(in_features=128, out_features=10, bias=True)
)
是否使用 GPU 加速: True

================ epoch: 0 ================
Epoch: 0, Step 0, Loss: 2.3131277561187744
Epoch: 0, Step 50, Loss: 1.0419045686721802
Epoch: 0, Step 100, Loss: 0.6259541511535645
Epoch: 0, Step 150, Loss: 0.7194482684135437
Epoch: 0, Step 200, Loss: 0.4020516574382782
Epoch: 0, Step 250, Loss: 0.6890509128570557
Epoch: 0, Step 300, Loss: 0.28660136461257935
Epoch: 0, Step 350, Loss: 0.3277580738067627
Epoch: 0, Step 400, Loss: 0.2750288248062134
Epoch: 0, Step 450, Loss: 0.28428223729133606
Epoch: 0, Step 500, Loss: 0.3514065444469452
Epoch: 0, Step 550, Loss: 0.23386947810649872
Epoch: 0, Step 600, Loss: 0.25338059663772583
Epoch: 0, Step 650, Loss: 0.1743898093700409
Epoch: 0, Step 700, Loss: 0.35752204060554504
Epoch: 0, Step 750, Loss: 0.17575909197330475
Epoch: 0, Step 800, Loss: 0.20604261755943298
Epoch: 0, Step 850, Loss: 0.17389622330665588
Epoch: 0, Step 900, Loss: 0.3188241124153137
Test Accuracy: 96.56%

================ epoch: 1 ================
Epoch: 1, Step 0, Loss: 0.23558208346366882
Epoch: 1, Step 50, Loss: 0.13511177897453308
Epoch: 1, Step 100, Loss: 0.18823786079883575
Epoch: 1, Step 150, Loss: 0.2644936144351959
Epoch: 1, Step 200, Loss: 0.145077645778656
Epoch: 1, Step 250, Loss: 0.30574971437454224
Epoch: 1, Step 300, Loss: 0.2386859953403473
Epoch: 1, Step 350, Loss: 0.08346735686063766
Epoch: 1, Step 400, Loss: 0.10480977594852448
Epoch: 1, Step 450, Loss: 0.07280707359313965
Epoch: 1, Step 500, Loss: 0.20928426086902618
Epoch: 1, Step 550, Loss: 0.20455852150917053
Epoch: 1, Step 600, Loss: 0.10085935145616531
Epoch: 1, Step 650, Loss: 0.13476189970970154
Epoch: 1, Step 700, Loss: 0.19087043404579163
Epoch: 1, Step 750, Loss: 0.0981522724032402
Epoch: 1, Step 800, Loss: 0.1961515098810196
Epoch: 1, Step 850, Loss: 0.041140712797641754
Epoch: 1, Step 900, Loss: 0.250461220741272
Test Accuracy: 98.03%

================ epoch: 2 ================
Epoch: 2, Step 0, Loss: 0.09572553634643555
Epoch: 2, Step 50, Loss: 0.10370486229658127
Epoch: 2, Step 100, Loss: 0.17737184464931488
Epoch: 2, Step 150, Loss: 0.1570713371038437
Epoch: 2, Step 200, Loss: 0.07462178170681
Epoch: 2, Step 250, Loss: 0.18744900822639465
Epoch: 2, Step 300, Loss: 0.09910508990287781
Epoch: 2, Step 350, Loss: 0.08929706364870071
Epoch: 2, Step 400, Loss: 0.07703761011362076
Epoch: 2, Step 450, Loss: 0.10133732110261917
Epoch: 2, Step 500, Loss: 0.1314031481742859
Epoch: 2, Step 550, Loss: 0.10394387692213058
Epoch: 2, Step 600, Loss: 0.11612939089536667
Epoch: 2, Step 650, Loss: 0.17494803667068481
Epoch: 2, Step 700, Loss: 0.11065669357776642
Epoch: 2, Step 750, Loss: 0.061209067702293396
Epoch: 2, Step 800, Loss: 0.14715790748596191
Epoch: 2, Step 850, Loss: 0.03930797800421715
Epoch: 2, Step 900, Loss: 0.18030673265457153
Test Accuracy: 98.46000000000001%

================ epoch: 3 ================
Epoch: 3, Step 0, Loss: 0.09266342222690582
Epoch: 3, Step 50, Loss: 0.0414913073182106
Epoch: 3, Step 100, Loss: 0.2152961939573288
Epoch: 3, Step 150, Loss: 0.12287424504756927
Epoch: 3, Step 200, Loss: 0.13468700647354126
Epoch: 3, Step 250, Loss: 0.11967387050390244
Epoch: 3, Step 300, Loss: 0.11301510035991669
Epoch: 3, Step 350, Loss: 0.037447575479745865
Epoch: 3, Step 400, Loss: 0.04699449613690376
Epoch: 3, Step 450, Loss: 0.05472381412982941
Epoch: 3, Step 500, Loss: 0.09839300811290741
Epoch: 3, Step 550, Loss: 0.07964356243610382
Epoch: 3, Step 600, Loss: 0.08182843774557114
Epoch: 3, Step 650, Loss: 0.05514759197831154
Epoch: 3, Step 700, Loss: 0.13785190880298615
Epoch: 3, Step 750, Loss: 0.062480345368385315
Epoch: 3, Step 800, Loss: 0.120387002825737
Epoch: 3, Step 850, Loss: 0.04458726942539215
Epoch: 3, Step 900, Loss: 0.17119190096855164
Test Accuracy: 98.55000000000001%

================ epoch: 4 ================
Epoch: 4, Step 0, Loss: 0.08094145357608795
Epoch: 4, Step 50, Loss: 0.05615215748548508
Epoch: 4, Step 100, Loss: 0.07766406238079071
Epoch: 4, Step 150, Loss: 0.07915271818637848
Epoch: 4, Step 200, Loss: 0.1301635503768921
Epoch: 4, Step 250, Loss: 0.12118984013795853
Epoch: 4, Step 300, Loss: 0.073218435049057
Epoch: 4, Step 350, Loss: 0.04517696052789688
Epoch: 4, Step 400, Loss: 0.08493026345968246
Epoch: 4, Step 450, Loss: 0.03904269263148308
Epoch: 4, Step 500, Loss: 0.09386837482452393
Epoch: 4, Step 550, Loss: 0.12583576142787933
Epoch: 4, Step 600, Loss: 0.09053893387317657
Epoch: 4, Step 650, Loss: 0.06912104040384293
Epoch: 4, Step 700, Loss: 0.1502612829208374
Epoch: 4, Step 750, Loss: 0.07162325084209442
Epoch: 4, Step 800, Loss: 0.10512275993824005
Epoch: 4, Step 850, Loss: 0.028180215507745743
Epoch: 4, Step 900, Loss: 0.08492615073919296
Test Accuracy: 98.69%

到此这篇关于手把手教你实现PyTorch的MNIST数据集的文章就介绍到这了,更多相关PyTorch MNIST数据集内容请搜索51zixue.net以前的文章或继续浏览下面的相关文章希望大家以后多多支持51zixue.net!


PyMongo 查询数据的实现
Python for 循环语句的使用
万事OK自学网:51自学网_软件自学网_CAD自学网自学excel、自学PS、自学CAD、自学C语言、自学css3实例,是一个通过网络自主学习工作技能的自学平台,网友喜欢的软件自学网站。