您当前的位置:首页 > IT编程 > python
| C语言 | Java | VB | VC | python | Android | TensorFlow | C++ | oracle | 学术与代码 | cnn卷积神经网络 | gnn | 图像修复 | Keras | 数据集 | Neo4j | 自然语言处理 | 深度学习 | 医学CAD | 医学影像 | 超参数 | pointnet | pytorch | 异常检测 | Transformers | 情感分类 | 知识图谱 |

自学教程:Python道路车道线检测的实现

51自学网 2021-10-30 22:26:34
  python
这篇教程Python道路车道线检测的实现写得很实用,希望能帮到您。

车道线检测是自动驾驶汽车以及一般计算机视觉的关键组件。这个概念用于描述自动驾驶汽车的路径并避免进入另一条车道的风险。

在本文中,我们将构建一个机器学习项目来实时检测车道线。我们将使用 OpenCV 库使用计算机视觉的概念来做到这一点。为了检测车道,我们必须检测车道两侧的白色标记。

在这里插入图片描述

使用 Python 和 OpenCV 进行道路车道线检测
使用 Python 中的计算机视觉技术,我们将识别自动驾驶汽车必须行驶的道路车道线。这将是自动驾驶汽车的关键部分,因为自动驾驶汽车不应该越过它的车道,也不应该进入对面车道以避免事故。

帧掩码和霍夫线变换
要检测车道中的白色标记,首先,我们需要屏蔽帧的其余部分。我们使用帧屏蔽来做到这一点。该帧只不过是图像像素值的 NumPy 数组。为了掩盖帧中不必要的像素,我们只需将 NumPy 数组中的这些像素值更新为 0。

制作后我们需要检测车道线。用于检测此类数学形状的技术称为霍夫变换。霍夫变换可以检测矩形、圆形、三角形和直线等形状。

代码下载
源码请下载:车道线检测项目代码

按照以下步骤在 Python 中进行车道线检测:

1.导入包

import matplotlib.pyplot as pltimport numpy as npimport cv2import osimport matplotlib.image as mpimgfrom moviepy.editor import VideoFileClipimport math

2. 应用帧屏蔽并找到感兴趣的区域:

def interested_region(img, vertices):    if len(img.shape) > 2:         mask_color_ignore = (255,) * img.shape[2]    else:        mask_color_ignore = 255            cv2.fillPoly(np.zeros_like(img), vertices, mask_color_ignore)    return cv2.bitwise_and(img, np.zeros_like(img))

3.霍夫变换空间中像素到线的转换:

def hough_lines(img, rho, theta, threshold, min_line_len, max_line_gap):    lines = cv2.HoughLinesP(img, rho, theta, threshold, np.array([]), minLineLength=min_line_len, maxLineGap=max_line_gap)    line_img = np.zeros((img.shape[0], img.shape[1], 3), dtype=np.uint8)    lines_drawn(line_img,lines)    return line_img

4. 霍夫变换后在每一帧中创建两条线:

def lines_drawn(img, lines, color=[255, 0, 0], thickness=6):    global cache    global first_frame    slope_l, slope_r = [],[]    lane_l,lane_r = [],[]    α =0.2   for line in lines:        for x1,y1,x2,y2 in line:            slope = (y2-y1)/(x2-x1)            if slope > 0.4:                slope_r.append(slope)                lane_r.append(line)            elif slope < -0.4:                slope_l.append(slope)                lane_l.append(line)        img.shape[0] = min(y1,y2,img.shape[0])    if((len(lane_l) == 0) or (len(lane_r) == 0)):        print ('no lane detected')        return 1    slope_mean_l = np.mean(slope_l,axis =0)    slope_mean_r = np.mean(slope_r,axis =0)    mean_l = np.mean(np.array(lane_l),axis=0)    mean_r = np.mean(np.array(lane_r),axis=0)        if ((slope_mean_r == 0) or (slope_mean_l == 0 )):        print('dividing by zero')        return 1        x1_l = int((img.shape[0] - mean_l[0][1] - (slope_mean_l * mean_l[0][0]))/slope_mean_l)     x2_l = int((img.shape[0] - mean_l[0][1] - (slope_mean_l * mean_l[0][0]))/slope_mean_l)       x1_r = int((img.shape[0] - mean_r[0][1] - (slope_mean_r * mean_r[0][0]))/slope_mean_r)    x2_r = int((img.shape[0] - mean_r[0][1] - (slope_mean_r * mean_r[0][0]))/slope_mean_r)           if x1_l > x1_r:        x1_l = int((x1_l+x1_r)/2)        x1_r = x1_l        y1_l = int((slope_mean_l * x1_l ) + mean_l[0][1] - (slope_mean_l * mean_l[0][0]))        y1_r = int((slope_mean_r * x1_r ) + mean_r[0][1] - (slope_mean_r * mean_r[0][0]))        y2_l = int((slope_mean_l * x2_l ) + mean_l[0][1] - (slope_mean_l * mean_l[0][0]))        y2_r = int((slope_mean_r * x2_r ) + mean_r[0][1] - (slope_mean_r * mean_r[0][0]))    else:        y1_l = img.shape[0]        y2_l = img.shape[0]        y1_r = img.shape[0]        y2_r = img.shape[0]          present_frame = np.array([x1_l,y1_l,x2_l,y2_l,x1_r,y1_r,x2_r,y2_r],dtype ="float32")        if first_frame == 1:        next_frame = present_frame                first_frame = 0            else :        prev_frame = cache        next_frame = (1-α)*prev_frame+α*present_frame                 cv2.line(img, (int(next_frame[0]), int(next_frame[1])), (int(next_frame[2]),int(next_frame[3])), color, thickness)    cv2.line(img, (int(next_frame[4]), int(next_frame[5])), (int(next_frame[6]),int(next_frame[7])), color, thickness)        cache = next_frame

5.处理每一帧视频以检测车道:

def weighted_img(img, initial_img, α=0.8, β=1., λ=0.):    return cv2.addWeighted(initial_img, α, img, β, λ)def process_image(image):    global first_frame    gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)    img_hsv = cv2.cvtColor(image, cv2.COLOR_RGB2HSV)    lower_yellow = np.array([20, 100, 100], dtype = "uint8")    upper_yellow = np.array([30, 255, 255], dtype="uint8")    mask_yellow = cv2.inRange(img_hsv, lower_yellow, upper_yellow)    mask_white = cv2.inRange(gray_image, 200, 255)    mask_yw = cv2.bitwise_or(mask_white, mask_yellow)    mask_yw_image = cv2.bitwise_and(gray_image, mask_yw)    gauss_gray= cv2.GaussianBlur(mask_yw_image, (5, 5), 0)    canny_edges=cv2.Canny(gauss_gray, 50, 150)    imshape = image.shape    lower_left = [imshape[1]/9,imshape[0]]    lower_right = [imshape[1]-imshape[1]/9,imshape[0]]    top_left = [imshape[1]/2-imshape[1]/8,imshape[0]/2+imshape[0]/10]    top_right = [imshape[1]/2+imshape[1]/8,imshape[0]/2+imshape[0]/10]    vertices = [np.array([lower_left,top_left,top_right,lower_right],dtype=np.int32)]    roi_image = interested_region(canny_edges, vertices)    theta = np.pi/180    line_image = hough_lines(roi_image, 4, theta, 30, 100, 180)    result = weighted_img(line_image, image, α=0.8, β=1., λ=0.)    return result

6. 将输入视频剪辑成帧并得到结果输出视频文件:

first_frame = 1white_output = '__path_to_output_file__'clip1 = VideoFileClip("__path_to_input_file__")white_clip = clip1.fl_image(process_image)white_clip.write_videofile(white_output, audio=False)

车道线检测项目 GUI 代码:

在这里插入图片描述

import tkinter as tkfrom tkinter import *import cv2from PIL import Image, ImageTkimport osimport numpy as npglobal last_frame1                                   last_frame1 = np.zeros((480, 640, 3), dtype=np.uint8)global last_frame2                                      last_frame2 = np.zeros((480, 640, 3), dtype=np.uint8)global cap1global cap2cap1 = cv2.VideoCapture("path_to_input_test_video")cap2 = cv2.VideoCapture("path_to_resultant_lane_detected_video")def show_vid():                                           if not cap1.isOpened():                                     print("cant open the camera1")    flag1, frame1 = cap1.read()    frame1 = cv2.resize(frame1,(400,500))    if flag1 is None:        print ("Major error!")    elif flag1:        global last_frame1        last_frame1 = frame1.copy()        pic = cv2.cvtColor(last_frame1, cv2.COLOR_BGR2RGB)             img = Image.fromarray(pic)        imgtk = ImageTk.PhotoImage(image=img)        lmain.imgtk = imgtk        lmain.configure(image=imgtk)        lmain.after(10, show_vid)def show_vid2():    if not cap2.isOpened():                                     print("cant open the camera2")    flag2, frame2 = cap2.read()    frame2 = cv2.resize(frame2,(400,500))    if flag2 is None:        print ("Major error2!")    elif flag2:        global last_frame2        last_frame2 = frame2.copy()        pic2 = cv2.cvtColor(last_frame2, cv2.COLOR_BGR2RGB)        img2 = Image.fromarray(pic2)        img2tk = ImageTk.PhotoImage(image=img2)        lmain2.img2tk = img2tk        lmain2.configure(image=img2tk)        lmain2.after(10, show_vid2)if __name__ == '__main__':    root=tk.Tk()                                         lmain = tk.Label(master=root)    lmain2 = tk.Label(master=root)    lmain.pack(side = LEFT)    lmain2.pack(side = RIGHT)    root.title("Lane-line detection")                root.geometry("900x700+100+10")     exitbutton = Button(root, text='Quit',fg="red",command=   root.destroy).pack(side = BOTTOM,)    show_vid()    show_vid2()    root.mainloop()                                      cap.release()

到此这篇关于Python道路车道线检测的实现的文章就介绍到这了,更多相关Python 道路车道线检测内容请搜索51zixue.net以前的文章或继续浏览下面的相关文章希望大家以后多多支持51zixue.net!


浅析Django接口版本控制
Python基于百度AI实现抓取表情包
万事OK自学网:51自学网_软件自学网_CAD自学网自学excel、自学PS、自学CAD、自学C语言、自学css3实例,是一个通过网络自主学习工作技能的自学平台,网友喜欢的软件自学网站。