您当前的位置:首页 > IT编程 > python
| C语言 | Java | VB | VC | python | Android | TensorFlow | C++ | oracle | 学术与代码 | cnn卷积神经网络 | gnn | 图像修复 | Keras | 数据集 | Neo4j | 自然语言处理 | 深度学习 | 医学CAD | 医学影像 | 超参数 | pointnet | pytorch | 异常检测 | Transformers | 情感分类 | 知识图谱 |

自学教程:python实现A*寻路算法

51自学网 2021-10-30 22:29:12
  python
这篇教程python实现A*寻路算法写得很实用,希望能帮到您。

A* 算法简介

A* 算法需要维护两个数据结构:OPEN 集和 CLOSED 集。OPEN 集包含所有已搜索到的待检测节点。初始状态,OPEN集仅包含一个元素:开始节点。CLOSED集包含已检测的节点。初始状态,CLOSED集为空。每个节点还包含一个指向父节点的指针,以确定追踪关系。

A* 算法会给每个搜索到的节点计算一个G+H 的和值F:

  • F = G + H
  • G:是从开始节点到当前节点的移动量。假设开始节点到相邻节点的移动量为1,该值会随着离开始点越来越远而增大。
  • H:是从当前节点到目标节点的移动量估算值。
    • 如果允许向4邻域的移动,使用曼哈顿距离。
    • 如果允许向8邻域的移动,使用对角线距离。

算法有一个主循环,重复下面步骤直到到达目标节点:
1 每次从OPEN集中取一个最优节点n(即F值最小的节点)来检测。
2 将节点n从OPEN集中移除,然后添加到CLOSED集中。
3 如果n是目标节点,那么算法结束。
4 否则尝试添加节点n的所有邻节点n'。

  • 邻节点在CLOSED集中,表示它已被检测过,则无需再添加。
  • 邻节点在OPEN集中:
    • 如果重新计算的G值比邻节点保存的G值更小,则需要更新这个邻节点的G值和F值,以及父节点;
    • 否则不做操作
  • 否则将该邻节点加入OPEN集,设置其父节点为n,并设置它的G值和F值。

有一点需要注意,如果开始节点到目标节点实际是不连通的,即无法从开始节点移动到目标节点,那算法在第1步判断获取到的节点n为空,就会退出

关键代码介绍

保存基本信息的地图类

地图类用于随机生成一个供寻路算法工作的基础地图信息

先创建一个map类, 初始化参数设置地图的长度和宽度,并设置保存地图信息的二维数据map的值为0, 值为0表示能移动到该节点。

class Map():	def __init__(self, width, height):		self.width = width		self.height = height		self.map = [[0 for x in range(self.width)] for y in range(self.height)]

在map类中添加一个创建不能通过节点的函数,节点值为1表示不能移动到该节点。

	def createBlock(self, block_num):		for i in range(block_num):			x, y = (randint(0, self.width-1), randint(0, self.height-1))			self.map[y][x] = 1

在map类中添加一个显示地图的函数,可以看到,这边只是简单的打印出所有节点的值,值为0或1的意思上面已经说明,在后面显示寻路算法结果时,会使用到值2,表示一条从开始节点到目标节点的路径。

	def showMap(self):		print("+" * (3 * self.width + 2))		for row in self.map:			s = '+'			for entry in row:				s += ' ' + str(entry) + ' '			s += '+'			print(s)		print("+" * (3 * self.width + 2))

添加一个随机获取可移动节点的函数

	def generatePos(self, rangeX, rangeY):		x, y = (randint(rangeX[0], rangeX[1]), randint(rangeY[0], rangeY[1]))		while self.map[y][x] == 1:			x, y = (randint(rangeX[0], rangeX[1]), randint(rangeY[0], rangeY[1]))		return (x , y)

搜索到的节点类

每一个搜索到将到添加到OPEN集的节点,都会创建一个下面的节点类,保存有entry的位置信息(x,y),计算得到的G值和F值,和该节点的父节点(pre_entry)。

class SearchEntry():	def __init__(self, x, y, g_cost, f_cost=0, pre_entry=None):		self.x = x		self.y = y		# cost move form start entry to this entry		self.g_cost = g_cost		self.f_cost = f_cost		self.pre_entry = pre_entry		def getPos(self):		return (self.x, self.y)

算法主函数介绍

下面就是上面算法主循环介绍的代码实现,OPEN集和CLOSED集的数据结构使用了字典,在一般情况下,查找,添加和删除节点的时间复杂度为O(1), 遍历的时间复杂度为O(n), n为字典中对象数目。

def AStarSearch(map, source, dest):	...	openlist = {}	closedlist = {}	location = SearchEntry(source[0], source[1], 0.0)	dest = SearchEntry(dest[0], dest[1], 0.0)	openlist[source] = location	while True:		location = getFastPosition(openlist)		if location is None:			# not found valid path			print("can't find valid path")			break;				if location.x == dest.x and location.y == dest.y:			break				closedlist[location.getPos()] = location		openlist.pop(location.getPos())		addAdjacentPositions(map, location, dest, openlist, closedlist)		#mark the found path at the map	while location is not None:		map.map[location.y][location.x] = 2		location = location.pre_entry

我们按照算法主循环的实现来一个个讲解用到的函数。
下面函数就是从OPEN集中获取一个F值最小的节点,如果OPEN集会空,则返回None。

	# find a least cost position in openlist, return None if openlist is empty	def getFastPosition(openlist):		fast = None		for entry in openlist.values():			if fast is None:				fast = entry			elif fast.f_cost > entry.f_cost:				fast = entry		return fast

addAdjacentPositions 函数对应算法主函数循环介绍中的尝试添加节点n的所有邻节点n'。

	# add available adjacent positions	def addAdjacentPositions(map, location, dest, openlist, closedlist):		poslist = getPositions(map, location)		for pos in poslist:			# if position is already in closedlist, do nothing			if isInList(closedlist, pos) is None:				findEntry = isInList(openlist, pos)				h_cost = calHeuristic(pos, dest)				g_cost = location.g_cost + getMoveCost(location, pos)				if findEntry is None :					# if position is not in openlist, add it to openlist					openlist[pos] = SearchEntry(pos[0], pos[1], g_cost, g_cost+h_cost, location)				elif findEntry.g_cost > g_cost:					# if position is in openlist and cost is larger than current one,					# then update cost and previous position					findEntry.g_cost = g_cost					findEntry.f_cost = g_cost + h_cost					findEntry.pre_entry = location

getPositions 函数获取到所有能够移动的节点,这里提供了2种移动的方式:

  • 允许上,下,左,右 4邻域的移动
  • 允许上,下,左,右,左上,右上,左下,右下 8邻域的移动
	def getNewPosition(map, locatioin, offset):		x,y = (location.x + offset[0], location.y + offset[1])		if x < 0 or x >= map.width or y < 0 or y >= map.height or map.map[y][x] == 1:			return None		return (x, y)			def getPositions(map, location):		# use four ways or eight ways to move		offsets = [(-1,0), (0, -1), (1, 0), (0, 1)]		#offsets = [(-1,0), (0, -1), (1, 0), (0, 1), (-1,-1), (1, -1), (-1, 1), (1, 1)]		poslist = []		for offset in offsets:			pos = getNewPosition(map, location, offset)			if pos is not None:							poslist.append(pos)		return poslist

isInList 函数判断节点是否在OPEN集 或CLOSED集中

	# check if the position is in list	def isInList(list, pos):		if pos in list:			return list[pos]		return None

calHeuristic 函数简单得使用了曼哈顿距离,这个后续可以进行优化。
getMoveCost 函数根据是否是斜向移动来计算消耗(斜向就是2的开根号,约等于1.4)

	# imporve the heuristic distance more precisely in future	def calHeuristic(pos, dest):		return abs(dest.x - pos[0]) + abs(dest.y - pos[1])			def getMoveCost(location, pos):		if location.x != pos[0] and location.y != pos[1]:			return 1.4		else:			return 1

代码的初始化

可以调整地图的长度,宽度和不可移动节点的数目。
可以调整开始节点和目标节点的取值范围。

WIDTH = 10HEIGHT = 10BLOCK_NUM = 15map = Map(WIDTH, HEIGHT)map.createBlock(BLOCK_NUM)map.showMap()source = map.generatePos((0,WIDTH//3),(0,HEIGHT//3))dest = map.generatePos((WIDTH//2,WIDTH-1),(HEIGHT//2,HEIGHT-1))print("source:", source)print("dest:", dest)AStarSearch(map, source, dest)map.showMap()

执行的效果图如下,第一个表示随机生成的地图,值为1的节点表示不能移动到该节点。
第二个图中值为2的节点表示找到的路径。

在这里插入图片描述

完整代码

使用python3.7编译

from random import randintclass SearchEntry():	def __init__(self, x, y, g_cost, f_cost=0, pre_entry=None):		self.x = x		self.y = y		# cost move form start entry to this entry		self.g_cost = g_cost		self.f_cost = f_cost		self.pre_entry = pre_entry		def getPos(self):		return (self.x, self.y)class Map():	def __init__(self, width, height):		self.width = width		self.height = height		self.map = [[0 for x in range(self.width)] for y in range(self.height)]		def createBlock(self, block_num):		for i in range(block_num):			x, y = (randint(0, self.width-1), randint(0, self.height-1))			self.map[y][x] = 1		def generatePos(self, rangeX, rangeY):		x, y = (randint(rangeX[0], rangeX[1]), randint(rangeY[0], rangeY[1]))		while self.map[y][x] == 1:			x, y = (randint(rangeX[0], rangeX[1]), randint(rangeY[0], rangeY[1]))		return (x , y)	def showMap(self):		print("+" * (3 * self.width + 2))		for row in self.map:			s = '+'			for entry in row:				s += ' ' + str(entry) + ' '			s += '+'			print(s)		print("+" * (3 * self.width + 2))	def AStarSearch(map, source, dest):	def getNewPosition(map, locatioin, offset):		x,y = (location.x + offset[0], location.y + offset[1])		if x < 0 or x >= map.width or y < 0 or y >= map.height or map.map[y][x] == 1:			return None		return (x, y)			def getPositions(map, location):		# use four ways or eight ways to move		offsets = [(-1,0), (0, -1), (1, 0), (0, 1)]		#offsets = [(-1,0), (0, -1), (1, 0), (0, 1), (-1,-1), (1, -1), (-1, 1), (1, 1)]		poslist = []		for offset in offsets:			pos = getNewPosition(map, location, offset)			if pos is not None:							poslist.append(pos)		return poslist		# imporve the heuristic distance more precisely in future	def calHeuristic(pos, dest):		return abs(dest.x - pos[0]) + abs(dest.y - pos[1])			def getMoveCost(location, pos):		if location.x != pos[0] and location.y != pos[1]:			return 1.4		else:			return 1	# check if the position is in list	def isInList(list, pos):		if pos in list:			return list[pos]		return None		# add available adjacent positions	def addAdjacentPositions(map, location, dest, openlist, closedlist):		poslist = getPositions(map, location)		for pos in poslist:			# if position is already in closedlist, do nothing			if isInList(closedlist, pos) is None:				findEntry = isInList(openlist, pos)				h_cost = calHeuristic(pos, dest)				g_cost = location.g_cost + getMoveCost(location, pos)				if findEntry is None :					# if position is not in openlist, add it to openlist					openlist[pos] = SearchEntry(pos[0], pos[1], g_cost, g_cost+h_cost, location)				elif findEntry.g_cost > g_cost:					# if position is in openlist and cost is larger than current one,					# then update cost and previous position					findEntry.g_cost = g_cost					findEntry.f_cost = g_cost + h_cost					findEntry.pre_entry = location		# find a least cost position in openlist, return None if openlist is empty	def getFastPosition(openlist):		fast = None		for entry in openlist.values():			if fast is None:				fast = entry			elif fast.f_cost > entry.f_cost:				fast = entry		return fast	openlist = {}	closedlist = {}	location = SearchEntry(source[0], source[1], 0.0)	dest = SearchEntry(dest[0], dest[1], 0.0)	openlist[source] = location	while True:		location = getFastPosition(openlist)		if location is None:			# not found valid path			print("can't find valid path")			break;				if location.x == dest.x and location.y == dest.y:			break				closedlist[location.getPos()] = location		openlist.pop(location.getPos())		addAdjacentPositions(map, location, dest, openlist, closedlist)			#mark the found path at the map	while location is not None:		map.map[location.y][location.x] = 2		location = location.pre_entry		WIDTH = 10HEIGHT = 10BLOCK_NUM = 15map = Map(WIDTH, HEIGHT)map.createBlock(BLOCK_NUM)map.showMap()source = map.generatePos((0,WIDTH//3),(0,HEIGHT//3))dest = map.generatePos((WIDTH//2,WIDTH-1),(HEIGHT//2,HEIGHT-1))print("source:", source)print("dest:", dest)AStarSearch(map, source, dest)map.showMap()

到此这篇关于python实现A*寻路算法的文章就介绍到这了,更多相关python A*寻路算法内容请搜索51zixue.net以前的文章或继续浏览下面的相关文章希望大家以后多多支持51zixue.net!


Python实现生成bmp图像的方法
Python OpenCV实现传统图片格式与base64转换
万事OK自学网:51自学网_软件自学网_CAD自学网自学excel、自学PS、自学CAD、自学C语言、自学css3实例,是一个通过网络自主学习工作技能的自学平台,网友喜欢的软件自学网站。