您当前的位置:首页 > IT编程 > python
| C语言 | Java | VB | VC | python | Android | TensorFlow | C++ | oracle | 学术与代码 | cnn卷积神经网络 | gnn | 图像修复 | Keras | 数据集 | Neo4j | 自然语言处理 | 深度学习 | 医学CAD | 医学影像 | 超参数 | pointnet | pytorch | 异常检测 | Transformers | 情感分类 | 知识图谱 |

自学教程:Pytorch可视化的几种实现方法

51自学网 2021-10-30 22:29:31
  python
这篇教程Pytorch可视化的几种实现方法写得很实用,希望能帮到您。

一,利用 tensorboardX 可视化网络结构

参考 https://github.com/lanpa/tensorboardX
支持scalar, image, figure, histogram, audio, text, graph, onnx_graph, embedding, pr_curve and video summaries.
例子要求tensorboardX>=1.2 and pytorch>=0.4

安装

pip install tensorboardXpip install git+https://github.com/lanpa/tensorboardX

例子

# demo.pyimport torchimport torchvision.utils as vutilsimport numpy as npimport torchvision.models as modelsfrom torchvision import datasetsfrom tensorboardX import SummaryWriterresnet18 = models.resnet18(False)writer = SummaryWriter()sample_rate = 44100freqs = [262, 294, 330, 349, 392, 440, 440, 440, 440, 440, 440]for n_iter in range(100):    dummy_s1 = torch.rand(1)    dummy_s2 = torch.rand(1)    # data grouping by `slash`    writer.add_scalar('data/scalar1', dummy_s1[0], n_iter)    writer.add_scalar('data/scalar2', dummy_s2[0], n_iter)    writer.add_scalars('data/scalar_group', {'xsinx': n_iter * np.sin(n_iter),                                             'xcosx': n_iter * np.cos(n_iter),                                             'arctanx': np.arctan(n_iter)}, n_iter)    dummy_img = torch.rand(32, 3, 64, 64)  # output from network    if n_iter % 10 == 0:        x = vutils.make_grid(dummy_img, normalize=True, scale_each=True)        writer.add_image('Image', x, n_iter)        dummy_audio = torch.zeros(sample_rate * 2)        for i in range(x.size(0)):            # amplitude of sound should in [-1, 1]            dummy_audio[i] = np.cos(freqs[n_iter // 10] * np.pi * float(i) / float(sample_rate))        writer.add_audio('myAudio', dummy_audio, n_iter, sample_rate=sample_rate)        writer.add_text('Text', 'text logged at step:' + str(n_iter), n_iter)        for name, param in resnet18.named_parameters():            writer.add_histogram(name, param.clone().cpu().data.numpy(), n_iter)        # needs tensorboard 0.4RC or later        writer.add_pr_curve('xoxo', np.random.randint(2, size=100), np.random.rand(100), n_iter)dataset = datasets.MNIST('mnist', train=False, download=True)images = dataset.test_data[:100].float()label = dataset.test_labels[:100]features = images.view(100, 784)writer.add_embedding(features, metadata=label, label_img=images.unsqueeze(1))# export scalar data to JSON for external processingwriter.export_scalars_to_json("./all_scalars.json")writer.close()

运行: python demo.py 会出现runs文件夹,然后在cd到工程目录运行tensorboard --logdir runs

结果:

在这里插入图片描述

二,利用 vistom 可视化

参考:https://github.com/facebookresearch/visdom

安装和启动
安装: pip install visdom
启动:python -m visdom.server示例

    from visdom import Visdom    #单张    viz.image(        np.random.rand(3, 512, 256),        opts=dict(title=/////'Random!/////', caption=/////'How random./////'),    )    #多张    viz.images(        np.random.randn(20, 3, 64, 64),        opts=dict(title=/////'Random images/////', caption=/////'How random./////')    )

在这里插入图片描述

from visdom import Visdomimage = np.zeros((100,100))vis = Visdom() vis.text("hello world!!!")vis.image(image)vis.line(Y = np.column_stack((np.random.randn(10),np.random.randn(10))),          X = np.column_stack((np.arange(10),np.arange(10))),         opts = dict(title = "line", legend=["Test","Test1"]))

在这里插入图片描述

三,利用pytorchviz可视化网络结构

参考:https://github.com/szagoruyko/pytorchviz

到此这篇关于Pytorch可视化的几种实现方法的文章就介绍到这了,更多相关Pytorch可视化内容请搜索51zixue.net以前的文章或继续浏览下面的相关文章希望大家以后多多支持51zixue.net!


Python爬虫必备之XPath解析库
Python中常见的反爬机制及其破解方法总结
万事OK自学网:51自学网_软件自学网_CAD自学网自学excel、自学PS、自学CAD、自学C语言、自学css3实例,是一个通过网络自主学习工作技能的自学平台,网友喜欢的软件自学网站。