这篇教程Pytorch中Softmax和LogSoftmax的使用详解写得很实用,希望能帮到您。 一、函数解释1.Softmax函数常用的用法是指定参数dim就可以:(1)dim=0:对每一列的所有元素进行softmax运算,并使得每一列所有元素和为1。 (2)dim=1:对每一行的所有元素进行softmax运算,并使得每一行所有元素和为1。 class Softmax(Module): r"""Applies the Softmax function to an n-dimensional input Tensor rescaling them so that the elements of the n-dimensional output Tensor lie in the range [0,1] and sum to 1. Softmax is defined as: .. math:: /text{Softmax}(x_{i}) = /frac{/exp(x_i)}{/sum_j /exp(x_j)} Shape: - Input: :math:`(*)` where `*` means, any number of additional dimensions - Output: :math:`(*)`, same shape as the input Returns: a Tensor of the same dimension and shape as the input with values in the range [0, 1] Arguments: dim (int): A dimension along which Softmax will be computed (so every slice along dim will sum to 1). .. note:: This module doesn't work directly with NLLLoss, which expects the Log to be computed between the Softmax and itself. Use `LogSoftmax` instead (it's faster and has better numerical properties). Examples:: >>> m = nn.Softmax(dim=1) >>> input = torch.randn(2, 3) >>> output = m(input) """ __constants__ = ['dim'] def __init__(self, dim=None): super(Softmax, self).__init__() self.dim = dim def __setstate__(self, state): self.__dict__.update(state) if not hasattr(self, 'dim'): self.dim = None def forward(self, input): return F.softmax(input, self.dim, _stacklevel=5) def extra_repr(self): return 'dim={dim}'.format(dim=self.dim) 2.LogSoftmax其实就是对softmax的结果进行log,即Log(Softmax(x))class LogSoftmax(Module): r"""Applies the :math:`/log(/text{Softmax}(x))` function to an n-dimensional input Tensor. The LogSoftmax formulation can be simplified as: .. math:: /text{LogSoftmax}(x_{i}) = /log/left(/frac{/exp(x_i) }{ /sum_j /exp(x_j)} /right) Shape: - Input: :math:`(*)` where `*` means, any number of additional dimensions - Output: :math:`(*)`, same shape as the input Arguments: dim (int): A dimension along which LogSoftmax will be computed. Returns: a Tensor of the same dimension and shape as the input with values in the range [-inf, 0) Examples:: >>> m = nn.LogSoftmax() >>> input = torch.randn(2, 3) >>> output = m(input) """ __constants__ = ['dim'] def __init__(self, dim=None): super(LogSoftmax, self).__init__() self.dim = dim def __setstate__(self, state): self.__dict__.update(state) if not hasattr(self, 'dim'): self.dim = None def forward(self, input): return F.log_softmax(input, self.dim, _stacklevel=5) 二、代码示例输入代码 import torchimport torch.nn as nnimport numpy as np batch_size = 4class_num = 6inputs = torch.randn(batch_size, class_num)for i in range(batch_size): for j in range(class_num): inputs[i][j] = (i + 1) * (j + 1) print("inputs:", inputs) 得到大小batch_size为4,类别数为6的向量(可以理解为经过最后一层得到) tensor([[ 1., 2., 3., 4., 5., 6.], [ 2., 4., 6., 8., 10., 12.], [ 3., 6., 9., 12., 15., 18.], [ 4., 8., 12., 16., 20., 24.]])
接着我们对该向量每一行进行Softmax Softmax = nn.Softmax(dim=1)probs = Softmax(inputs)print("probs:/n", probs) 得到 tensor([[4.2698e-03, 1.1606e-02, 3.1550e-02, 8.5761e-02, 2.3312e-01, 6.3369e-01], [3.9256e-05, 2.9006e-04, 2.1433e-03, 1.5837e-02, 1.1702e-01, 8.6467e-01], [2.9067e-07, 5.8383e-06, 1.1727e-04, 2.3553e-03, 4.7308e-02, 9.5021e-01], [2.0234e-09, 1.1047e-07, 6.0317e-06, 3.2932e-04, 1.7980e-02, 9.8168e-01]])
此外,我们对该向量每一行进行LogSoftmax LogSoftmax = nn.LogSoftmax(dim=1)log_probs = LogSoftmax(inputs)print("log_probs:/n", log_probs) 得到 tensor([[-5.4562e+00, -4.4562e+00, -3.4562e+00, -2.4562e+00, -1.4562e+00, -4.5619e-01], [-1.0145e+01, -8.1454e+00, -6.1454e+00, -4.1454e+00, -2.1454e+00, -1.4541e-01], [-1.5051e+01, -1.2051e+01, -9.0511e+00, -6.0511e+00, -3.0511e+00, -5.1069e-02], [-2.0018e+01, -1.6018e+01, -1.2018e+01, -8.0185e+00, -4.0185e+00, -1.8485e-02]])
验证每一行元素和是否为1 # probs_sum in dim=1probs_sum = [0 for i in range(batch_size)] for i in range(batch_size): for j in range(class_num): probs_sum[i] += probs[i][j] print(i, "row probs sum:", probs_sum[i]) 得到每一行的和,看到确实为1 0 row probs sum: tensor(1.) 1 row probs sum: tensor(1.0000) 2 row probs sum: tensor(1.) 3 row probs sum: tensor(1.)
验证LogSoftmax是对Softmax的结果进行Log # to numpynp_probs = probs.data.numpy()print("numpy probs:/n", np_probs) # np.log()log_np_probs = np.log(np_probs)print("log numpy probs:/n", log_np_probs) 得到 numpy probs: [[4.26977826e-03 1.16064614e-02 3.15496325e-02 8.57607946e-02 2.33122006e-01 6.33691311e-01] [3.92559559e-05 2.90064461e-04 2.14330270e-03 1.58369839e-02 1.17020354e-01 8.64669979e-01] [2.90672347e-07 5.83831024e-06 1.17265590e-04 2.35534250e-03 4.73083146e-02 9.50212955e-01] [2.02340233e-09 1.10474026e-07 6.03167746e-06 3.29318427e-04 1.79801770e-02 9.81684387e-01]] log numpy probs: [[-5.4561934e+00 -4.4561934e+00 -3.4561934e+00 -2.4561932e+00 -1.4561933e+00 -4.5619333e-01] [-1.0145408e+01 -8.1454077e+00 -6.1454072e+00 -4.1454072e+00 -2.1454074e+00 -1.4540738e-01] [-1.5051069e+01 -1.2051069e+01 -9.0510693e+00 -6.0510693e+00 -3.0510693e+00 -5.1069155e-02] [-2.0018486e+01 -1.6018486e+01 -1.2018485e+01 -8.0184851e+00 -4.0184855e+00 -1.8485421e-02]]
验证完毕 三、整体代码import torchimport torch.nn as nnimport numpy as np batch_size = 4class_num = 6inputs = torch.randn(batch_size, class_num)for i in range(batch_size): for j in range(class_num): inputs[i][j] = (i + 1) * (j + 1) print("inputs:", inputs)Softmax = nn.Softmax(dim=1)probs = Softmax(inputs)print("probs:/n", probs) LogSoftmax = nn.LogSoftmax(dim=1)log_probs = LogSoftmax(inputs)print("log_probs:/n", log_probs) # probs_sum in dim=1probs_sum = [0 for i in range(batch_size)] for i in range(batch_size): for j in range(class_num): probs_sum[i] += probs[i][j] print(i, "row probs sum:", probs_sum[i]) # to numpynp_probs = probs.data.numpy()print("numpy probs:/n", np_probs) # np.log()log_np_probs = np.log(np_probs)print("log numpy probs:/n", log_np_probs) 基于pytorch softmax,logsoftmax 表达import torchimport numpy as npinput = torch.autograd.Variable(torch.rand(1, 3))print(input)print('softmax={}'.format(torch.nn.functional.softmax(input, dim=1)))print('logsoftmax={}'.format(np.log(torch.nn.functional.softmax(input, dim=1)))) 以上为个人经验,希望能给大家一个参考,也希望大家多多支持51zixue.net。 Pytorch中Softmax与LogSigmoid的对比分析 python threading模块的使用指南 |