您当前的位置:首页 > IT编程 > python
| C语言 | Java | VB | VC | python | Android | TensorFlow | C++ | oracle | 学术与代码 | cnn卷积神经网络 | gnn | 图像修复 | Keras | 数据集 | Neo4j | 自然语言处理 | 深度学习 | 医学CAD | 医学影像 | 超参数 | pointnet | pytorch | 异常检测 | Transformers | 情感分类 | 知识图谱 |

自学教程:Pytorch中Softmax和LogSoftmax的使用详解

51自学网 2021-10-30 22:31:05
  python
这篇教程Pytorch中Softmax和LogSoftmax的使用详解写得很实用,希望能帮到您。

一、函数解释

1.Softmax函数常用的用法是指定参数dim就可以:

(1)dim=0:对每一列的所有元素进行softmax运算,并使得每一列所有元素和为1。

(2)dim=1:对每一行的所有元素进行softmax运算,并使得每一行所有元素和为1。

class Softmax(Module):    r"""Applies the Softmax function to an n-dimensional input Tensor    rescaling them so that the elements of the n-dimensional output Tensor    lie in the range [0,1] and sum to 1.    Softmax is defined as:    .. math::        /text{Softmax}(x_{i}) = /frac{/exp(x_i)}{/sum_j /exp(x_j)}    Shape:        - Input: :math:`(*)` where `*` means, any number of additional          dimensions        - Output: :math:`(*)`, same shape as the input    Returns:        a Tensor of the same dimension and shape as the input with        values in the range [0, 1]    Arguments:        dim (int): A dimension along which Softmax will be computed (so every slice            along dim will sum to 1).    .. note::        This module doesn't work directly with NLLLoss,        which expects the Log to be computed between the Softmax and itself.        Use `LogSoftmax` instead (it's faster and has better numerical properties).    Examples::        >>> m = nn.Softmax(dim=1)        >>> input = torch.randn(2, 3)        >>> output = m(input)    """    __constants__ = ['dim']     def __init__(self, dim=None):        super(Softmax, self).__init__()        self.dim = dim     def __setstate__(self, state):        self.__dict__.update(state)        if not hasattr(self, 'dim'):            self.dim = None     def forward(self, input):        return F.softmax(input, self.dim, _stacklevel=5)     def extra_repr(self):        return 'dim={dim}'.format(dim=self.dim)

2.LogSoftmax其实就是对softmax的结果进行log,即Log(Softmax(x))

class LogSoftmax(Module):    r"""Applies the :math:`/log(/text{Softmax}(x))` function to an n-dimensional    input Tensor. The LogSoftmax formulation can be simplified as:    .. math::        /text{LogSoftmax}(x_{i}) = /log/left(/frac{/exp(x_i) }{ /sum_j /exp(x_j)} /right)    Shape:        - Input: :math:`(*)` where `*` means, any number of additional          dimensions        - Output: :math:`(*)`, same shape as the input    Arguments:        dim (int): A dimension along which LogSoftmax will be computed.    Returns:        a Tensor of the same dimension and shape as the input with        values in the range [-inf, 0)    Examples::        >>> m = nn.LogSoftmax()        >>> input = torch.randn(2, 3)        >>> output = m(input)    """    __constants__ = ['dim']     def __init__(self, dim=None):        super(LogSoftmax, self).__init__()        self.dim = dim     def __setstate__(self, state):        self.__dict__.update(state)        if not hasattr(self, 'dim'):            self.dim = None     def forward(self, input):        return F.log_softmax(input, self.dim, _stacklevel=5)

二、代码示例

输入代码

import torchimport torch.nn as nnimport numpy as np batch_size = 4class_num = 6inputs = torch.randn(batch_size, class_num)for i in range(batch_size):    for j in range(class_num):        inputs[i][j] = (i + 1) * (j + 1) print("inputs:", inputs)

得到大小batch_size为4,类别数为6的向量(可以理解为经过最后一层得到)

tensor([[ 1., 2., 3., 4., 5., 6.],
[ 2., 4., 6., 8., 10., 12.],
[ 3., 6., 9., 12., 15., 18.],
[ 4., 8., 12., 16., 20., 24.]])

接着我们对该向量每一行进行Softmax

Softmax = nn.Softmax(dim=1)probs = Softmax(inputs)print("probs:/n", probs)

得到

tensor([[4.2698e-03, 1.1606e-02, 3.1550e-02, 8.5761e-02, 2.3312e-01, 6.3369e-01],
[3.9256e-05, 2.9006e-04, 2.1433e-03, 1.5837e-02, 1.1702e-01, 8.6467e-01],
[2.9067e-07, 5.8383e-06, 1.1727e-04, 2.3553e-03, 4.7308e-02, 9.5021e-01],
[2.0234e-09, 1.1047e-07, 6.0317e-06, 3.2932e-04, 1.7980e-02, 9.8168e-01]])

此外,我们对该向量每一行进行LogSoftmax

LogSoftmax = nn.LogSoftmax(dim=1)log_probs = LogSoftmax(inputs)print("log_probs:/n", log_probs)

得到

tensor([[-5.4562e+00, -4.4562e+00, -3.4562e+00, -2.4562e+00, -1.4562e+00, -4.5619e-01],
[-1.0145e+01, -8.1454e+00, -6.1454e+00, -4.1454e+00, -2.1454e+00, -1.4541e-01],
[-1.5051e+01, -1.2051e+01, -9.0511e+00, -6.0511e+00, -3.0511e+00, -5.1069e-02],
[-2.0018e+01, -1.6018e+01, -1.2018e+01, -8.0185e+00, -4.0185e+00, -1.8485e-02]])

验证每一行元素和是否为1

# probs_sum in dim=1probs_sum = [0 for i in range(batch_size)] for i in range(batch_size):    for j in range(class_num):        probs_sum[i] += probs[i][j]    print(i, "row probs sum:", probs_sum[i])

得到每一行的和,看到确实为1

0 row probs sum: tensor(1.)
1 row probs sum: tensor(1.0000)
2 row probs sum: tensor(1.)
3 row probs sum: tensor(1.)

验证LogSoftmax是对Softmax的结果进行Log

# to numpynp_probs = probs.data.numpy()print("numpy probs:/n", np_probs) # np.log()log_np_probs = np.log(np_probs)print("log numpy probs:/n", log_np_probs)

得到

numpy probs:
[[4.26977826e-03 1.16064614e-02 3.15496325e-02 8.57607946e-02 2.33122006e-01 6.33691311e-01]
[3.92559559e-05 2.90064461e-04 2.14330270e-03 1.58369839e-02 1.17020354e-01 8.64669979e-01]
[2.90672347e-07 5.83831024e-06 1.17265590e-04 2.35534250e-03 4.73083146e-02 9.50212955e-01]
[2.02340233e-09 1.10474026e-07 6.03167746e-06 3.29318427e-04 1.79801770e-02 9.81684387e-01]]
log numpy probs:
[[-5.4561934e+00 -4.4561934e+00 -3.4561934e+00 -2.4561932e+00 -1.4561933e+00 -4.5619333e-01]
[-1.0145408e+01 -8.1454077e+00 -6.1454072e+00 -4.1454072e+00 -2.1454074e+00 -1.4540738e-01]
[-1.5051069e+01 -1.2051069e+01 -9.0510693e+00 -6.0510693e+00 -3.0510693e+00 -5.1069155e-02]
[-2.0018486e+01 -1.6018486e+01 -1.2018485e+01 -8.0184851e+00 -4.0184855e+00 -1.8485421e-02]]

验证完毕

三、整体代码

import torchimport torch.nn as nnimport numpy as np batch_size = 4class_num = 6inputs = torch.randn(batch_size, class_num)for i in range(batch_size):    for j in range(class_num):        inputs[i][j] = (i + 1) * (j + 1) print("inputs:", inputs)Softmax = nn.Softmax(dim=1)probs = Softmax(inputs)print("probs:/n", probs) LogSoftmax = nn.LogSoftmax(dim=1)log_probs = LogSoftmax(inputs)print("log_probs:/n", log_probs) # probs_sum in dim=1probs_sum = [0 for i in range(batch_size)] for i in range(batch_size):    for j in range(class_num):        probs_sum[i] += probs[i][j]    print(i, "row probs sum:", probs_sum[i]) # to numpynp_probs = probs.data.numpy()print("numpy probs:/n", np_probs) # np.log()log_np_probs = np.log(np_probs)print("log numpy probs:/n", log_np_probs)

基于pytorch softmax,logsoftmax 表达

import torchimport numpy as npinput = torch.autograd.Variable(torch.rand(1, 3))print(input)print('softmax={}'.format(torch.nn.functional.softmax(input, dim=1)))print('logsoftmax={}'.format(np.log(torch.nn.functional.softmax(input, dim=1))))

以上为个人经验,希望能给大家一个参考,也希望大家多多支持51zixue.net。


Pytorch中Softmax与LogSigmoid的对比分析
python threading模块的使用指南
万事OK自学网:51自学网_软件自学网_CAD自学网自学excel、自学PS、自学CAD、自学C语言、自学css3实例,是一个通过网络自主学习工作技能的自学平台,网友喜欢的软件自学网站。