您当前的位置:首页 > IT编程 > python
| C语言 | Java | VB | VC | python | Android | TensorFlow | C++ | oracle | 学术与代码 | cnn卷积神经网络 | gnn | 图像修复 | Keras | 数据集 | Neo4j | 自然语言处理 | 深度学习 | 医学CAD | 医学影像 | 超参数 | pointnet | pytorch | 异常检测 | Transformers | 情感分类 | 知识图谱 |

自学教程:OpenCV中resize函数插值算法的实现过程(五种)

51自学网 2021-10-30 22:31:10
  python
这篇教程OpenCV中resize函数插值算法的实现过程(五种)写得很实用,希望能帮到您。

最新版OpenCV2.4.7中,cv::resize函数有五种插值算法:最近邻、双线性、双三次、基于像素区域关系、兰索斯插值。下面用for循环代替cv::resize函数来说明其详细的插值实现过程,其中部分代码摘自于cv::resize函数中的源代码。

每种插值算法的前部分代码是相同的,如下:

	cv::Mat matSrc, matDst1, matDst2; 	matSrc = cv::imread("lena.jpg", 2 | 4);	matDst1 = cv::Mat(cv::Size(800, 1000), matSrc.type(), cv::Scalar::all(0));	matDst2 = cv::Mat(matDst1.size(), matSrc.type(), cv::Scalar::all(0)); 	double scale_x = (double)matSrc.cols / matDst1.cols;	double scale_y = (double)matSrc.rows / matDst1.rows;

1、最近邻:公式,

	for (int i = 0; i < matDst1.cols; ++i)	{		int sx = cvFloor(i * scale_x);		sx = std::min(sx, matSrc.cols - 1);		for (int j = 0; j < matDst1.rows; ++j)		{			int sy = cvFloor(j * scale_y);			sy = std::min(sy, matSrc.rows - 1);			matDst1.at<cv::Vec3b>(j, i) = matSrc.at<cv::Vec3b>(sy, sx);		}	}	cv::imwrite("nearest_1.jpg", matDst1); 	cv::resize(matSrc, matDst2, matDst1.size(), 0, 0, 0);	cv::imwrite("nearest_2.jpg", matDst2);

2、双线性:由相邻的四像素(2*2)计算得出,公式,

	uchar* dataDst = matDst1.data;	int stepDst = matDst1.step;	uchar* dataSrc = matSrc.data;	int stepSrc = matSrc.step;	int iWidthSrc = matSrc.cols;	int iHiehgtSrc = matSrc.rows; 	for (int j = 0; j < matDst1.rows; ++j)	{		float fy = (float)((j + 0.5) * scale_y - 0.5);		int sy = cvFloor(fy);		fy -= sy;		sy = std::min(sy, iHiehgtSrc - 2);		sy = std::max(0, sy); 		short cbufy[2];		cbufy[0] = cv::saturate_cast<short>((1.f - fy) * 2048);		cbufy[1] = 2048 - cbufy[0]; 		for (int i = 0; i < matDst1.cols; ++i)		{			float fx = (float)((i + 0.5) * scale_x - 0.5);			int sx = cvFloor(fx);			fx -= sx; 			if (sx < 0) {				fx = 0, sx = 0;			}			if (sx >= iWidthSrc - 1) {				fx = 0, sx = iWidthSrc - 2;			} 			short cbufx[2];			cbufx[0] = cv::saturate_cast<short>((1.f - fx) * 2048);			cbufx[1] = 2048 - cbufx[0]; 			for (int k = 0; k < matSrc.channels(); ++k)			{				*(dataDst+ j*stepDst + 3*i + k) = (*(dataSrc + sy*stepSrc + 3*sx + k) * cbufx[0] * cbufy[0] + 					*(dataSrc + (sy+1)*stepSrc + 3*sx + k) * cbufx[0] * cbufy[1] + 					*(dataSrc + sy*stepSrc + 3*(sx+1) + k) * cbufx[1] * cbufy[0] + 					*(dataSrc + (sy+1)*stepSrc + 3*(sx+1) + k) * cbufx[1] * cbufy[1]) >> 22;			}		}	}	cv::imwrite("linear_1.jpg", matDst1); 	cv::resize(matSrc, matDst2, matDst1.size(), 0, 0, 1);	cv::imwrite("linear_2.jpg", matDst2);

3、双三次:由相邻的4*4像素计算得出,公式类似于双线性

	int iscale_x = cv::saturate_cast<int>(scale_x);	int iscale_y = cv::saturate_cast<int>(scale_y); 	for (int j = 0; j < matDst1.rows; ++j)	{		float fy = (float)((j + 0.5) * scale_y - 0.5);		int sy = cvFloor(fy);		fy -= sy;		sy = std::min(sy, matSrc.rows - 3);		sy = std::max(1, sy); 		const float A = -0.75f; 		float coeffsY[4];		coeffsY[0] = ((A*(fy + 1) - 5*A)*(fy + 1) + 8*A)*(fy + 1) - 4*A;		coeffsY[1] = ((A + 2)*fy - (A + 3))*fy*fy + 1;		coeffsY[2] = ((A + 2)*(1 - fy) - (A + 3))*(1 - fy)*(1 - fy) + 1;		coeffsY[3] = 1.f - coeffsY[0] - coeffsY[1] - coeffsY[2]; 		short cbufY[4];		cbufY[0] = cv::saturate_cast<short>(coeffsY[0] * 2048);		cbufY[1] = cv::saturate_cast<short>(coeffsY[1] * 2048);		cbufY[2] = cv::saturate_cast<short>(coeffsY[2] * 2048);		cbufY[3] = cv::saturate_cast<short>(coeffsY[3] * 2048); 		for (int i = 0; i < matDst1.cols; ++i)		{			float fx = (float)((i + 0.5) * scale_x - 0.5);			int sx = cvFloor(fx);			fx -= sx; 			if (sx < 1) {				fx = 0, sx = 1;			}			if (sx >= matSrc.cols - 3) {				fx = 0, sx = matSrc.cols - 3;			} 			float coeffsX[4];			coeffsX[0] = ((A*(fx + 1) - 5*A)*(fx + 1) + 8*A)*(fx + 1) - 4*A;			coeffsX[1] = ((A + 2)*fx - (A + 3))*fx*fx + 1;			coeffsX[2] = ((A + 2)*(1 - fx) - (A + 3))*(1 - fx)*(1 - fx) + 1;			coeffsX[3] = 1.f - coeffsX[0] - coeffsX[1] - coeffsX[2]; 			short cbufX[4];			cbufX[0] = cv::saturate_cast<short>(coeffsX[0] * 2048);			cbufX[1] = cv::saturate_cast<short>(coeffsX[1] * 2048);			cbufX[2] = cv::saturate_cast<short>(coeffsX[2] * 2048);			cbufX[3] = cv::saturate_cast<short>(coeffsX[3] * 2048); 			for (int k = 0; k < matSrc.channels(); ++k)			{				matDst1.at<cv::Vec3b>(j, i)[k] = abs((matSrc.at<cv::Vec3b>(sy-1, sx-1)[k] * cbufX[0] * cbufY[0] + matSrc.at<cv::Vec3b>(sy, sx-1)[k] * cbufX[0] * cbufY[1] +					matSrc.at<cv::Vec3b>(sy+1, sx-1)[k] * cbufX[0] * cbufY[2] + matSrc.at<cv::Vec3b>(sy+2, sx-1)[k] * cbufX[0] * cbufY[3] +					matSrc.at<cv::Vec3b>(sy-1, sx)[k] * cbufX[1] * cbufY[0] + matSrc.at<cv::Vec3b>(sy, sx)[k] * cbufX[1] * cbufY[1] +					matSrc.at<cv::Vec3b>(sy+1, sx)[k] * cbufX[1] * cbufY[2] + matSrc.at<cv::Vec3b>(sy+2, sx)[k] * cbufX[1] * cbufY[3] +					matSrc.at<cv::Vec3b>(sy-1, sx+1)[k] * cbufX[2] * cbufY[0] + matSrc.at<cv::Vec3b>(sy, sx+1)[k] * cbufX[2] * cbufY[1] +					matSrc.at<cv::Vec3b>(sy+1, sx+1)[k] * cbufX[2] * cbufY[2] + matSrc.at<cv::Vec3b>(sy+2, sx+1)[k] * cbufX[2] * cbufY[3] +					matSrc.at<cv::Vec3b>(sy-1, sx+2)[k] * cbufX[3] * cbufY[0] + matSrc.at<cv::Vec3b>(sy, sx+2)[k] * cbufX[3] * cbufY[1] +					matSrc.at<cv::Vec3b>(sy+1, sx+2)[k] * cbufX[3] * cbufY[2] + matSrc.at<cv::Vec3b>(sy+2, sx+2)[k] * cbufX[3] * cbufY[3] ) >> 22);			}		}	}	cv::imwrite("cubic_1.jpg", matDst1); 	cv::resize(matSrc, matDst2, matDst1.size(), 0, 0, 2);	cv::imwrite("cubic_2.jpg", matDst2);

4、基于像素区域关系:共分三种情况,图像放大时类似于双线性插值,图像缩小(x轴、y轴同时缩小)又分两种情况,此情况下可以避免波纹出现。

#ifdef _MSC_VER	cv::resize(matSrc, matDst2, matDst1.size(), 0, 0, 3);	cv::imwrite("E:/GitCode/OpenCV_Test/test_images/area_2.jpg", matDst2);#else	cv::resize(matSrc, matDst2, matDst1.size(), 0, 0, 3);	cv::imwrite("area_2.jpg", matDst2);#endif 	fprintf(stdout, "==== start area ====/n");	double inv_scale_x = 1. / scale_x;	double inv_scale_y = 1. / scale_y;	int iscale_x = cv::saturate_cast<int>(scale_x);	int iscale_y = cv::saturate_cast<int>(scale_y);	bool is_area_fast = std::abs(scale_x - iscale_x) < DBL_EPSILON && std::abs(scale_y - iscale_y) < DBL_EPSILON; 	if (scale_x >= 1 && scale_y >= 1)  { // zoom out		if (is_area_fast)  { // integer multiples			for (int j = 0; j < matDst1.rows; ++j) {				int sy = std::min(cvFloor(j * scale_y), matSrc.rows - 1); 				for (int i = 0; i < matDst1.cols; ++i) {					int sx = std::min(cvFloor(i * scale_x), matSrc.cols -1); 					matDst1.at<cv::Vec3b>(j, i) = matSrc.at<cv::Vec3b>(sy, sx);				}			}#ifdef _MSC_VER			cv::imwrite("E:/GitCode/OpenCV_Test/test_images/area_1.jpg", matDst1);#else			cv::imwrite("area_1.jpg", matDst1);#endif			return 0;		} 		for (int j = 0; j < matDst1.rows; ++j) {			double fsy1 = j * scale_y;			double fsy2 = fsy1 + scale_y;			double cellHeight = cv::min(scale_y, matSrc.rows - fsy1); 			int sy1 = cvCeil(fsy1), sy2 = cvFloor(fsy2); 			sy2 = std::min(sy2, matSrc.rows - 2);			sy1 = std::min(sy1, sy2); 			float cbufy[2];			cbufy[0] = (float)((sy1 - fsy1) / cellHeight);			cbufy[1] = (float)(std::min(std::min(fsy2 - sy2, 1.), cellHeight) / cellHeight); 			for (int i = 0; i < matDst1.cols; ++i) {				double fsx1 = i * scale_x;				double fsx2 = fsx1 + scale_x;				double cellWidth = std::min(scale_x, matSrc.cols - fsx1); 				int sx1 = cvCeil(fsx1), sx2 = cvFloor(fsx2); 				sx2 = std::min(sx2, matSrc.cols - 2);				sx1 = std::min(sx1, sx2); 				float cbufx[2];				cbufx[0] = (float)((sx1 - fsx1) / cellWidth);				cbufx[1] = (float)(std::min(std::min(fsx2 - sx2, 1.), cellWidth) / cellWidth); 				for (int k = 0; k < matSrc.channels(); ++k) {					matDst1.at<cv::Vec3b>(j, i)[k] = (uchar)(matSrc.at<cv::Vec3b>(sy1, sx1)[k] * cbufx[0] * cbufy[0] +						matSrc.at<cv::Vec3b>(sy1 + 1, sx1)[k] * cbufx[0] * cbufy[1] +						matSrc.at<cv::Vec3b>(sy1, sx1 + 1)[k] * cbufx[1] * cbufy[0] +						matSrc.at<cv::Vec3b>(sy1 + 1, sx1 + 1)[k] * cbufx[1] * cbufy[1]);				}			}		}#ifdef _MSC_VER		cv::imwrite("E:/GitCode/OpenCV_Test/test_images/area_1.jpg", matDst1);#else		cv::imwrite("area_1.jpg", matDst1);#endif 		return 0;	} 	//zoom in,it is emulated using some variant of bilinear interpolation	for (int j = 0; j < matDst1.rows; ++j) {		int  sy = cvFloor(j * scale_y);		float fy = (float)((j + 1) - (sy + 1) * inv_scale_y);		fy = fy <= 0 ? 0.f : fy - cvFloor(fy);		sy = std::min(sy, matSrc.rows - 2); 		short cbufy[2];		cbufy[0] = cv::saturate_cast<short>((1.f - fy) * 2048);		cbufy[1] = 2048 - cbufy[0]; 		for (int i = 0; i < matDst1.cols; ++i) {			int sx = cvFloor(i * scale_x);			float fx = (float)((i + 1) - (sx + 1) * inv_scale_x);			fx = fx < 0 ? 0.f : fx - cvFloor(fx); 			if (sx < 0) {				fx = 0, sx = 0;			} 			if (sx >= matSrc.cols - 1) {				fx = 0, sx = matSrc.cols - 2;			} 			short cbufx[2];			cbufx[0] = cv::saturate_cast<short>((1.f - fx) * 2048);			cbufx[1] = 2048 - cbufx[0]; 			for (int k = 0; k < matSrc.channels(); ++k) {				matDst1.at<cv::Vec3b>(j, i)[k] = (matSrc.at<cv::Vec3b>(sy, sx)[k] * cbufx[0] * cbufy[0] +					matSrc.at<cv::Vec3b>(sy + 1, sx)[k] * cbufx[0] * cbufy[1] +					matSrc.at<cv::Vec3b>(sy, sx + 1)[k] * cbufx[1] * cbufy[0] +					matSrc.at<cv::Vec3b>(sy + 1, sx + 1)[k] * cbufx[1] * cbufy[1]) >> 22;			}		}	}	fprintf(stdout, "==== end area ====/n"); #ifdef _MSC_VER	cv::imwrite("E:/GitCode/OpenCV_Test/test_images/area_1.jpg", matDst1);#else	cv::imwrite("area_1.jpg", matDst1);#endif

注:以上基于area进行图像缩小的代码有问题,具体实现代码可以参考https://github.com/fengbingchun/OpenCV_Test/blob/master/src/fbc_cv/include/resize.hpp,用法如下:

fbc::Mat3BGR src(matSrc.rows, matSrc.cols, matSrc.data);fbc::Mat3BGR dst(matDst1.rows, matDst1.cols, matDst1.data);fbc::resize(src, dst, 3);

5、兰索斯插值:由相邻的8*8像素计算得出,公式类似于双线性

	int iscale_x = cv::saturate_cast<int>(scale_x);	int iscale_y = cv::saturate_cast<int>(scale_y); 	for (int j = 0; j < matDst1.rows; ++j)	{		float fy = (float)((j + 0.5) * scale_y - 0.5);		int sy = cvFloor(fy);		fy -= sy;		sy = std::min(sy, matSrc.rows - 5);		sy = std::max(3, sy); 		const double s45 = 0.70710678118654752440084436210485;		const double cs[][2] = {{1, 0}, {-s45, -s45}, {0, 1}, {s45, -s45}, {-1, 0}, {s45, s45}, {0, -1}, {-s45, s45}};		float coeffsY[8]; 		if (fy < FLT_EPSILON) {			for (int t = 0; t < 8; t++)				coeffsY[t] = 0;			coeffsY[3] = 1;		} else {			float sum = 0;			double y0 = -(fy + 3) * CV_PI * 0.25, s0 = sin(y0), c0 = cos(y0); 			for (int t = 0; t < 8; ++t)			{				double dy = -(fy + 3 -t) * CV_PI * 0.25;				coeffsY[t] = (float)((cs[t][0] * s0 + cs[t][1] * c0) / (dy * dy));				sum += coeffsY[t];			} 			sum = 1.f / sum;			for (int t = 0; t < 8; ++t)				coeffsY[t] *= sum;		} 		short cbufY[8];		cbufY[0] = cv::saturate_cast<short>(coeffsY[0] * 2048);		cbufY[1] = cv::saturate_cast<short>(coeffsY[1] * 2048);		cbufY[2] = cv::saturate_cast<short>(coeffsY[2] * 2048);		cbufY[3] = cv::saturate_cast<short>(coeffsY[3] * 2048);		cbufY[4] = cv::saturate_cast<short>(coeffsY[4] * 2048);		cbufY[5] = cv::saturate_cast<short>(coeffsY[5] * 2048);		cbufY[6] = cv::saturate_cast<short>(coeffsY[6] * 2048);		cbufY[7] = cv::saturate_cast<short>(coeffsY[7] * 2048); 		for (int i = 0; i < matDst1.cols; ++i)		{			float fx = (float)((i + 0.5) * scale_x - 0.5);			int sx = cvFloor(fx);			fx -= sx; 			if (sx < 3) {				fx = 0, sx = 3;			}			if (sx >= matSrc.cols - 5) {				fx = 0, sx = matSrc.cols - 5;			} 			float coeffsX[8]; 			if (fx < FLT_EPSILON) {				for ( int t = 0; t < 8; t++ )					coeffsX[t] = 0;				coeffsX[3] = 1;			} else {				float sum = 0;				double x0 = -(fx + 3) * CV_PI * 0.25, s0 = sin(x0), c0 = cos(x0); 				for (int t = 0; t < 8; ++t)				{					double dx = -(fx + 3 -t) * CV_PI * 0.25;					coeffsX[t] = (float)((cs[t][0] * s0 + cs[t][1] * c0) / (dx * dx));					sum += coeffsX[t];				} 				sum = 1.f / sum;				for (int t = 0; t < 8; ++t)					coeffsX[t] *= sum;			} 			short cbufX[8];			cbufX[0] = cv::saturate_cast<short>(coeffsX[0] * 2048);			cbufX[1] = cv::saturate_cast<short>(coeffsX[1] * 2048);			cbufX[2] = cv::saturate_cast<short>(coeffsX[2] * 2048);			cbufX[3] = cv::saturate_cast<short>(coeffsX[3] * 2048);			cbufX[4] = cv::saturate_cast<short>(coeffsX[4] * 2048);			cbufX[5] = cv::saturate_cast<short>(coeffsX[5] * 2048);			cbufX[6] = cv::saturate_cast<short>(coeffsX[6] * 2048);			cbufX[7] = cv::saturate_cast<short>(coeffsX[7] * 2048); 			for (int k = 0; k < matSrc.channels(); ++k)			{				matDst1.at<cv::Vec3b>(j, i)[k] = abs((matSrc.at<cv::Vec3b>(sy-3, sx-3)[k] * cbufX[0] * cbufY[0] + matSrc.at<cv::Vec3b>(sy-2, sx-3)[k] * cbufX[0] * cbufY[1] +					matSrc.at<cv::Vec3b>(sy-1, sx-3)[k] * cbufX[0] * cbufY[2] + matSrc.at<cv::Vec3b>(sy, sx-3)[k] * cbufX[0] * cbufY[3] +					matSrc.at<cv::Vec3b>(sy+1, sx-3)[k] * cbufX[0] * cbufY[4] + matSrc.at<cv::Vec3b>(sy+2, sx-3)[k] * cbufX[0] * cbufY[5] +					matSrc.at<cv::Vec3b>(sy+3, sx-3)[k] * cbufX[0] * cbufY[6] + matSrc.at<cv::Vec3b>(sy+4, sx-3)[k] * cbufX[0] * cbufY[7] + 					matSrc.at<cv::Vec3b>(sy-3, sx-2)[k] * cbufX[1] * cbufY[0] + matSrc.at<cv::Vec3b>(sy-2, sx-2)[k] * cbufX[1] * cbufY[1] +					matSrc.at<cv::Vec3b>(sy-1, sx-2)[k] * cbufX[1] * cbufY[2] + matSrc.at<cv::Vec3b>(sy, sx-2)[k] * cbufX[1] * cbufY[3] +					matSrc.at<cv::Vec3b>(sy+1, sx-2)[k] * cbufX[1] * cbufY[4] + matSrc.at<cv::Vec3b>(sy+2, sx-2)[k] * cbufX[1] * cbufY[5] +					matSrc.at<cv::Vec3b>(sy+3, sx-2)[k] * cbufX[1] * cbufY[6] + matSrc.at<cv::Vec3b>(sy+4, sx-2)[k] * cbufX[1] * cbufY[7] + 					matSrc.at<cv::Vec3b>(sy-3, sx-1)[k] * cbufX[2] * cbufY[0] + matSrc.at<cv::Vec3b>(sy-2, sx-1)[k] * cbufX[2] * cbufY[1] +					matSrc.at<cv::Vec3b>(sy-1, sx-1)[k] * cbufX[2] * cbufY[2] + matSrc.at<cv::Vec3b>(sy, sx-1)[k] * cbufX[2] * cbufY[3] +					matSrc.at<cv::Vec3b>(sy+1, sx-1)[k] * cbufX[2] * cbufY[4] + matSrc.at<cv::Vec3b>(sy+2, sx-1)[k] * cbufX[2] * cbufY[5] +					matSrc.at<cv::Vec3b>(sy+3, sx-1)[k] * cbufX[2] * cbufY[6] + matSrc.at<cv::Vec3b>(sy+4, sx-1)[k] * cbufX[2] * cbufY[7] + 					matSrc.at<cv::Vec3b>(sy-3, sx)[k] * cbufX[3] * cbufY[0] + matSrc.at<cv::Vec3b>(sy-2, sx)[k] * cbufX[3] * cbufY[1] +					matSrc.at<cv::Vec3b>(sy-1, sx)[k] * cbufX[3] * cbufY[2] + matSrc.at<cv::Vec3b>(sy, sx)[k] * cbufX[3] * cbufY[3] +					matSrc.at<cv::Vec3b>(sy+1, sx)[k] * cbufX[3] * cbufY[4] + matSrc.at<cv::Vec3b>(sy+2, sx)[k] * cbufX[3] * cbufY[5] +					matSrc.at<cv::Vec3b>(sy+3, sx)[k] * cbufX[3] * cbufY[6] + matSrc.at<cv::Vec3b>(sy+4, sx)[k] * cbufX[3] * cbufY[7] + 					matSrc.at<cv::Vec3b>(sy-3, sx+1)[k] * cbufX[4] * cbufY[0] + matSrc.at<cv::Vec3b>(sy-2, sx+1)[k] * cbufX[4] * cbufY[1] +					matSrc.at<cv::Vec3b>(sy-1, sx+1)[k] * cbufX[4] * cbufY[2] + matSrc.at<cv::Vec3b>(sy, sx+1)[k] * cbufX[4] * cbufY[3] +					matSrc.at<cv::Vec3b>(sy+1, sx+1)[k] * cbufX[4] * cbufY[4] + matSrc.at<cv::Vec3b>(sy+2, sx+1)[k] * cbufX[4] * cbufY[5] +					matSrc.at<cv::Vec3b>(sy+3, sx+1)[k] * cbufX[4] * cbufY[6] + matSrc.at<cv::Vec3b>(sy+4, sx+1)[k] * cbufX[4] * cbufY[7] + 					matSrc.at<cv::Vec3b>(sy-3, sx+2)[k] * cbufX[5] * cbufY[0] + matSrc.at<cv::Vec3b>(sy-2, sx+2)[k] * cbufX[5] * cbufY[1] +					matSrc.at<cv::Vec3b>(sy-1, sx+2)[k] * cbufX[5] * cbufY[2] + matSrc.at<cv::Vec3b>(sy, sx+2)[k] * cbufX[5] * cbufY[3] +					matSrc.at<cv::Vec3b>(sy+1, sx+2)[k] * cbufX[5] * cbufY[4] + matSrc.at<cv::Vec3b>(sy+2, sx+2)[k] * cbufX[5] * cbufY[5] +					matSrc.at<cv::Vec3b>(sy+3, sx+2)[k] * cbufX[5] * cbufY[6] + matSrc.at<cv::Vec3b>(sy+4, sx+2)[k] * cbufX[5] * cbufY[7] + 					matSrc.at<cv::Vec3b>(sy-3, sx+3)[k] * cbufX[6] * cbufY[0] + matSrc.at<cv::Vec3b>(sy-2, sx+3)[k] * cbufX[6] * cbufY[1] +					matSrc.at<cv::Vec3b>(sy-1, sx+3)[k] * cbufX[6] * cbufY[2] + matSrc.at<cv::Vec3b>(sy, sx+3)[k] * cbufX[6] * cbufY[3] +					matSrc.at<cv::Vec3b>(sy+1, sx+3)[k] * cbufX[6] * cbufY[4] + matSrc.at<cv::Vec3b>(sy+2, sx+3)[k] * cbufX[6] * cbufY[5] +					matSrc.at<cv::Vec3b>(sy+3, sx+3)[k] * cbufX[6] * cbufY[6] + matSrc.at<cv::Vec3b>(sy+4, sx+3)[k] * cbufX[6] * cbufY[7] + 					matSrc.at<cv::Vec3b>(sy-3, sx+4)[k] * cbufX[7] * cbufY[0] + matSrc.at<cv::Vec3b>(sy-2, sx+4)[k] * cbufX[7] * cbufY[1] +					matSrc.at<cv::Vec3b>(sy-1, sx+4)[k] * cbufX[7] * cbufY[2] + matSrc.at<cv::Vec3b>(sy, sx+4)[k] * cbufX[7] * cbufY[3] +					matSrc.at<cv::Vec3b>(sy+1, sx+4)[k] * cbufX[7] * cbufY[4] + matSrc.at<cv::Vec3b>(sy+2, sx+4)[k] * cbufX[7] * cbufY[5] +					matSrc.at<cv::Vec3b>(sy+3, sx+4)[k] * cbufX[7] * cbufY[6] + matSrc.at<cv::Vec3b>(sy+4, sx+4)[k] * cbufX[7] * cbufY[7] ) >> 22);// 4194304			}		}	}	cv::imwrite("Lanczos_1.jpg", matDst1); 	cv::resize(matSrc, matDst2, matDst1.size(), 0, 0, 4);	cv::imwrite("Lanczos_2.jpg", matDst2);

以上代码的实现结果与cv::resize函数相同,但是执行效率非常低,只是为了详细说明插值过程。OpenCV中默认采用C++ Concurrency进行优化加速,你也可以采用TBB、OpenMP等进行优化加速。

GitHubhttps://github.com/fengbingchun/OpenCV_Test/blob/master/demo/OpenCV_Test/test_opencv_funset.cpp

到此这篇关于OpenCV中resize函数插值算法的实现过程(五种)的文章就介绍到这了,更多相关OpenCV resize插值内容请搜索51zixue.net以前的文章或继续浏览下面的相关文章希望大家以后多多支持51zixue.net!


OpenCV全景图像拼接的实现示例
刚学完怎么用Python实现定时任务,转头就跑去撩妹!
万事OK自学网:51自学网_软件自学网_CAD自学网自学excel、自学PS、自学CAD、自学C语言、自学css3实例,是一个通过网络自主学习工作技能的自学平台,网友喜欢的软件自学网站。