这篇教程浅谈tensorflow语义分割api的使用(deeplab训练cityscapes)写得很实用,希望能帮到您。 浅谈tensorflow语义分割api的使用(deeplab训练cityscapes)安装教程: cityscapes训练: 遇到的坑:1. 环境:- tensorflow1.8+CUDA9.0+cudnn7.0+annaconda3+py3.5 - 使用最新的tensorflow1.12或者1.10都不行,报错:报错不造卷积算法(convolution algorithm...) 2. 数据集转换# Exit immediately if a command exits with a non-zero status.set -eCURRENT_DIR=$(pwd)WORK_DIR="."# Root path for Cityscapes dataset.CITYSCAPES_ROOT="${WORK_DIR}/cityscapes"# Create training labels.python "${CITYSCAPES_ROOT}/cityscapesscripts/preparation/createTrainIdLabelImgs.py"# Build TFRecords of the dataset.# First, create output directory for storing TFRecords.OUTPUT_DIR="${CITYSCAPES_ROOT}/tfrecord"mkdir -p "${OUTPUT_DIR}"BUILD_SCRIPT="${CURRENT_DIR}/build_cityscapes_data.py"echo "Converting Cityscapes dataset..."python "${BUILD_SCRIPT}" / --cityscapes_root="${CITYSCAPES_ROOT}" / --output_dir="${OUTPUT_DIR}" / - 首先当前conda环境下安装cityscapesScripts模块,要支持py3.5才行; - 由于cityscapesscripts/preparation/createTrainIdLabelImgs.py里面默认会把数据集gtFine下面的test,train,val文件夹json文件都转为TrainIdlandelImgs.png;然而在test文件下有很多json文件编码格式是错误的,大约十几张,每次报错,然后将其剔除!!! - 然后执行build_cityscapes_data.py将img,lable转换为tfrecord格式。 3. 训练cityscapes代码- 将训练代码写成脚本文件:train_deeplab_cityscapes.sh #!/bin/bash# CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py --backbone resnet --lr 0.01 --workers 4 --epochs 40 --batch-size 16 --gpu-ids 0,1,2,3 --checkname deeplab-resnet --eval-interval 1 --dataset cocoPATH_TO_INITIAL_CHECKPOINT='/home/rjw/tf-models/research/deeplab/pretrain_models/deeplabv3_cityscapes_train/model.ckpt'PATH_TO_TRAIN_DIR='/home/rjw/tf-models/research/deeplab/datasets/cityscapes/exp/train_on_train_set/train/'PATH_TO_DATASET='/home/rjw/tf-models/research/deeplab/datasets/cityscapes/tfrecord'WORK_DIR='/home/rjw/tf-models/research/deeplab'# From tensorflow/models/research/python "${WORK_DIR}"/train.py / --logtostderr / --training_number_of_steps=40000 / --train_split="train" / --model_variant="xception_65" / --atrous_rates=6 / --atrous_rates=12 / --atrous_rates=18 / --output_stride=16 / --decoder_output_stride=4 / --train_crop_size=513 / --train_crop_size=513 / --train_batch_size=1 / --fine_tune_batch_norm=False / --dataset="cityscapes" / --tf_initial_checkpoint=${PATH_TO_INITIAL_CHECKPOINT} / --train_logdir=${PATH_TO_TRAIN_DIR} / --dataset_dir=${PATH_TO_DATASET} 参数分析: training_number_of_steps: 训练迭代次数; train_crop_size:训练图片的裁剪大小,因为我的GPU只有8G,故我将这个设置为513了; train_batch_size: 训练的batchsize,也是因为硬件条件,故保持1; fine_tune_batch_norm=False :是否使用batch_norm,官方建议,如果训练的batch_size小于12的话,须将该参数设置为False,这个设置很重要,否则的话训练时会在2000步左右报错 tf_initial_checkpoint:预训练的初始checkpoint,这里设置的即是前面下载的../research/deeplab/backbone/deeplabv3_cityscapes_train/model.ckpt.index train_logdir: 保存训练权重的目录,注意在开始的创建工程目录的时候就创建了,这里设置为"../research/deeplab/exp/train_on_train_set/train/" dataset_dir:数据集的地址,前面创建的TFRecords目录。这里设置为"../dataset/cityscapes/tfrecord" 4.验证测试- 验证脚本: #!/bin/bash# CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py --backbone resnet --lr 0.01 --workers 4 --epochs 40 --batch-size 16 --gpu-ids 0,1,2,3 --checkname deeplab-resnet --eval-interval 1 --dataset cocoPATH_TO_INITIAL_CHECKPOINT='/home/rjw/tf-models/research/deeplab/pretrain_models/deeplabv3_cityscapes_train/'PATH_TO_CHECKPOINT='/home/rjw/tf-models/research/deeplab/datasets/cityscapes/exp/train_on_train_set/train/'PATH_TO_EVAL_DIR='/home/rjw/tf-models/research/deeplab/datasets/cityscapes/exp/train_on_train_set/eval/'PATH_TO_DATASET='/home/rjw/tf-models/research/deeplab/datasets/cityscapes/tfrecord'WORK_DIR='/home/rjw/tf-models/research/deeplab'# From tensorflow/models/research/python "${WORK_DIR}"/eval.py / --logtostderr / --eval_split="val" / --model_variant="xception_65" / --atrous_rates=6 / --atrous_rates=12 / --atrous_rates=18 / --output_stride=16 / --decoder_output_stride=4 / --eval_crop_size=1025 / --eval_crop_size=2049 / --dataset="cityscapes" / --checkpoint_dir=${PATH_TO_INITIAL_CHECKPOINT} / --eval_logdir=${PATH_TO_EVAL_DIR} / --dataset_dir=${PATH_TO_DATASET} - rusult:model.ckpt-40000为在初始化模型上训练40000次迭代的模型;后面用初始化模型测试miou_1.0还是很低,不知道是不是有什么参数设置的问题!!! - 注意,如果使用官方提供的checkpoint,压缩包中是没有checkpoint文件的,需要手动添加一个checkpoint文件;初始化模型中是没有提供chekpoint文件的。 INFO:tensorflow:Restoring parameters from /home/rjw/tf-models/research/deeplab/datasets/cityscapes/exp/train_on_train_set/train/model.ckpt-40000INFO:tensorflow:Running local_init_op.INFO:tensorflow:Done running local_init_op.INFO:tensorflow:Starting evaluation at 2018-12-18-07:13:08INFO:tensorflow:Evaluation [50/500]INFO:tensorflow:Evaluation [100/500]INFO:tensorflow:Evaluation [150/500]INFO:tensorflow:Evaluation [200/500]INFO:tensorflow:Evaluation [250/500]INFO:tensorflow:Evaluation [300/500]INFO:tensorflow:Evaluation [350/500]INFO:tensorflow:Evaluation [400/500]INFO:tensorflow:Evaluation [450/500]miou_1.0[0.478293568]INFO:tensorflow:Waiting for new checkpoint at /home/rjw/tf-models/research/deeplab/pretrain_models/deeplabv3_cityscapes_train/INFO:tensorflow:Found new checkpoint at /home/rjw/tf-models/research/deeplab/pretrain_models/deeplabv3_cityscapes_train/model.ckptINFO:tensorflow:Graph was finalized.2018-12-18 15:18:05.210957: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1435] Adding visible gpu devices: 02018-12-18 15:18:05.211047: I tensorflow/core/common_runtime/gpu/gpu_device.cc:923] Device interconnect StreamExecutor with strength 1 edge matrix:2018-12-18 15:18:05.211077: I tensorflow/core/common_runtime/gpu/gpu_device.cc:929] 0 2018-12-18 15:18:05.211100: I tensorflow/core/common_runtime/gpu/gpu_device.cc:942] 0: N 2018-12-18 15:18:05.211645: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1053] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 9404 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1080 Ti, pci bus id: 0000:01:00.0, compute capability: 6.1)INFO:tensorflow:Restoring parameters from /home/rjw/tf-models/research/deeplab/pretrain_models/deeplabv3_cityscapes_train/model.ckptINFO:tensorflow:Running local_init_op.INFO:tensorflow:Done running local_init_op.INFO:tensorflow:Starting evaluation at 2018-12-18-07:18:06INFO:tensorflow:Evaluation [50/500]INFO:tensorflow:Evaluation [100/500]INFO:tensorflow:Evaluation [150/500]INFO:tensorflow:Evaluation [200/500]INFO:tensorflow:Evaluation [250/500]INFO:tensorflow:Evaluation [300/500]INFO:tensorflow:Evaluation [350/500]INFO:tensorflow:Evaluation [400/500]INFO:tensorflow:Evaluation [450/500]miou_1.0[0.496331513] 5.可视化测试- 在vis目录下生成分割结果图 #!/bin/bash# CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py --backbone resnet --lr 0.01 --workers 4 --epochs 40 --batch-size 16 --gpu-ids 0,1,2,3 --checkname deeplab-resnet --eval-interval 1 --dataset cocoPATH_TO_CHECKPOINT='/home/rjw/tf-models/research/deeplab/datasets/cityscapes/exp/train_on_train_set/train/'PATH_TO_VIS_DIR='/home/rjw/tf-models/research/deeplab/datasets/cityscapes/exp/train_on_train_set/vis/'PATH_TO_DATASET='/home/rjw/tf-models/research/deeplab/datasets/cityscapes/tfrecord'WORK_DIR='/home/rjw/tf-models/research/deeplab'# From tensorflow/models/research/python "${WORK_DIR}"/vis.py / --logtostderr / --vis_split="val" / --model_variant="xception_65" / --atrous_rates=6 / --atrous_rates=12 / --atrous_rates=18 / --output_stride=16 / --decoder_output_stride=4 / --vis_crop_size=1025 / --vis_crop_size=2049 / --dataset="cityscapes" / --colormap_type="cityscapes" / --checkpoint_dir=${PATH_TO_CHECKPOINT} / --vis_logdir=${PATH_TO_VIS_DIR} / --dataset_dir=${PATH_TO_DATASET} 以上为个人经验,希望能给大家一个参考,也希望大家多多支持51zixue.net。 Django分页器的用法详解 如何利用Python识别图片中的文字详解 |