这篇教程利用Python+OpenCV三步去除水印写得很实用,希望能帮到您。
一、推理原理1.标定噪声的特征,使用cv2.inRange二值化标识噪声对图片进行二值化处理,具体代码:cv2.inRange(img, np.array([200, 200, 240]), np.array([255, 255, 255])),把[200, 200, 200]~[255, 255, 255]以外的颜色处理为0 2.使用OpenCV的dilate方法,扩展特征的区域,优化图片处理效果 3.使用inpaint方法,把噪声的mask作为参数,推理并修复图片
二、推理步骤1.从源图片,截取右下角部分,另存为新图片 2.识别水印,颜色值为:[200, 200, 200]~[255, 255, 255] 3.去掉水印,还原图片 4.把源图片、去掉水印的新图片,进行重叠合并
三、参考代码import cv2import numpy as npfrom PIL import Imageimport osdir = os.getcwd()path = "1.jpg"newPath = "new.jpg"img=cv2.imread(path,1)hight,width,depth=img.shape[0:3]#截取cropped = img[int(hight*0.8):hight, int(width*0.7):width] # 裁剪坐标为[y0:y1, x0:x1]cv2.imwrite(newPath, cropped)imgSY = cv2.imread(newPath,1)#图片二值化处理,把[200,200,200]-[250,250,250]以外的颜色变成0thresh = cv2.inRange(imgSY,np.array([200,200,200]),np.array([250,250,250]))#创建形状和尺寸的结构元素kernel = np.ones((3,3),np.uint8)#扩展待修复区域hi_mask = cv2.dilate(thresh,kernel,iterations=10)specular = cv2.inpaint(imgSY,hi_mask,5,flags=cv2.INPAINT_TELEA)cv2.imwrite(newPath, specular)#覆盖图片imgSY = Image.open(newPath)img = Image.open(path)img.paste(imgSY, (int(width*0.7),int(hight*0.8),width,hight))img.save(newPath)import cv2import numpy as npfrom PIL import Imageimport osdir = os.getcwd()path = "1.jpg"newPath = "new.jpg"img=cv2.imread(path,1)hight,width,depth=img.shape[0:3]#截取cropped = img[int(hight*0.8):hight, int(width*0.7):width] # 裁剪坐标为[y0:y1, x0:x1]cv2.imwrite(newPath, cropped)imgSY = cv2.imread(newPath,1)#图片二值化处理,把[200,200,200]-[250,250,250]以外的颜色变成0thresh = cv2.inRange(imgSY,np.array([200,200,200]),np.array([250,250,250]))#创建形状和尺寸的结构元素kernel = np.ones((3,3),np.uint8)#扩展待修复区域hi_mask = cv2.dilate(thresh,kernel,iterations=10)specular = cv2.inpaint(imgSY,hi_mask,5,flags=cv2.INPAINT_TELEA)cv2.imwrite(newPath, specular)#覆盖图片imgSY = Image.open(newPath)img = Image.open(path)img.paste(imgSY, (int(width*0.7),int(hight*0.8),width,hight))img.save(newPath)
四、效果图没去水印前: 
去了后: 
到此这篇关于利用Python+OpenCV三步去除水印的文章就介绍到这了,更多相关Python+OpenCV去水印内容请搜索51zixue.net以前的文章或继续浏览下面的相关文章希望大家以后多多支持51zixue.net! python实现自定义日志的具体方法 解决Python中的modf()函数取小数部分不准确问题 |