您当前的位置:首页 > IT编程 > python
| C语言 | Java | VB | VC | python | Android | TensorFlow | C++ | oracle | 学术与代码 | cnn卷积神经网络 | gnn | 图像修复 | Keras | 数据集 | Neo4j | 自然语言处理 | 深度学习 | 医学CAD | 医学影像 | 超参数 | pointnet | pytorch | 异常检测 | Transformers | 情感分类 | 知识图谱 |

自学教程:对Keras自带Loss Function的深入研究

51自学网 2021-10-30 22:37:53
  python
这篇教程对Keras自带Loss Function的深入研究写得很实用,希望能帮到您。

本文研究Keras自带的几个常用的Loss Function。

1. categorical_crossentropy VS. sparse_categorical_crossentropy

注意到二者的主要差别在于输入是否为integer tensor。在文档中,我们还可以找到关于二者如何选择的描述:

解释一下这里的Integer target 与 Categorical target,实际上Integer target经过独热编码就变成了Categorical target,举例说明:

(类别数5)Integer target: [1,2,4]Categorical target: [[0. 1. 0. 0. 0.]					 [0. 0. 1. 0. 0.]					 [0. 0. 0. 0. 1.]]

在Keras中提供了to_categorical方法来实现二者的转化:

from keras.utils import to_categoricalcategorical_labels = to_categorical(int_labels, num_classes=None)

注意categorical_crossentropy和sparse_categorical_crossentropy的输入参数output,都是softmax输出的tensor。我们都知道softmax的输出服从多项分布,

因此categorical_crossentropy和sparse_categorical_crossentropy应当应用于多分类问题。

我们再看看这两个的源码,来验证一下:

https://github.com/tensorflow/tensorflow/blob/r1.13/tensorflow/python/keras/backend.py--------------------------------------------------------------------------------------------------------------------def categorical_crossentropy(target, output, from_logits=False, axis=-1):  """Categorical crossentropy between an output tensor and a target tensor.  Arguments:      target: A tensor of the same shape as `output`.      output: A tensor resulting from a softmax          (unless `from_logits` is True, in which          case `output` is expected to be the logits).      from_logits: Boolean, whether `output` is the          result of a softmax, or is a tensor of logits.      axis: Int specifying the channels axis. `axis=-1` corresponds to data          format `channels_last', and `axis=1` corresponds to data format          `channels_first`.  Returns:      Output tensor.  Raises:      ValueError: if `axis` is neither -1 nor one of the axes of `output`.  """  rank = len(output.shape)  axis = axis % rank  # Note: nn.softmax_cross_entropy_with_logits_v2  # expects logits, Keras expects probabilities.  if not from_logits:    # scale preds so that the class probas of each sample sum to 1    output = output / math_ops.reduce_sum(output, axis, True)    # manual computation of crossentropy    epsilon_ = _to_tensor(epsilon(), output.dtype.base_dtype)    output = clip_ops.clip_by_value(output, epsilon_, 1. - epsilon_)    return -math_ops.reduce_sum(target * math_ops.log(output), axis)  else:    return nn.softmax_cross_entropy_with_logits_v2(labels=target, logits=output)--------------------------------------------------------------------------------------------------------------------def sparse_categorical_crossentropy(target, output, from_logits=False, axis=-1):  """Categorical crossentropy with integer targets.  Arguments:      target: An integer tensor.      output: A tensor resulting from a softmax          (unless `from_logits` is True, in which          case `output` is expected to be the logits).      from_logits: Boolean, whether `output` is the          result of a softmax, or is a tensor of logits.      axis: Int specifying the channels axis. `axis=-1` corresponds to data          format `channels_last', and `axis=1` corresponds to data format          `channels_first`.  Returns:      Output tensor.  Raises:      ValueError: if `axis` is neither -1 nor one of the axes of `output`.  """  rank = len(output.shape)  axis = axis % rank  if axis != rank - 1:    permutation = list(range(axis)) + list(range(axis + 1, rank)) + [axis]    output = array_ops.transpose(output, perm=permutation)  # Note: nn.sparse_softmax_cross_entropy_with_logits  # expects logits, Keras expects probabilities.  if not from_logits:    epsilon_ = _to_tensor(epsilon(), output.dtype.base_dtype)    output = clip_ops.clip_by_value(output, epsilon_, 1 - epsilon_)    output = math_ops.log(output)  output_shape = output.shape  targets = cast(flatten(target), 'int64')  logits = array_ops.reshape(output, [-1, int(output_shape[-1])])  res = nn.sparse_softmax_cross_entropy_with_logits(      labels=targets, logits=logits)  if len(output_shape) >= 3:    # If our output includes timesteps or spatial dimensions we need to reshape    return array_ops.reshape(res, array_ops.shape(output)[:-1])  else:    return res

categorical_crossentropy计算交叉熵时使用的是nn.softmax_cross_entropy_with_logits_v2( labels=targets, logits=logits),而sparse_categorical_crossentropy使用的是nn.sparse_softmax_cross_entropy_with_logits( labels=targets, logits=logits),二者本质并无区别,只是对输入参数logits的要求不同,v2要求的是logits与labels格式相同(即元素也是独热的),而sparse则要求logits的元素是个数值,与上面Integer format和Categorical format的对比含义类似。

综上所述,categorical_crossentropy和sparse_categorical_crossentropy只不过是输入参数target类型上的区别,其loss的计算在本质上没有区别,就是交叉熵;二者是针对多分类(Multi-class)任务的。

2. Binary_crossentropy

二元交叉熵,从名字中我们可以看出,这个loss function可能是适用于二分类的。文档中并没有详细说明,那么直接看看源码吧:

https://github.com/tensorflow/tensorflow/blob/r1.13/tensorflow/python/keras/backend.py--------------------------------------------------------------------------------------------------------------------def binary_crossentropy(target, output, from_logits=False):  """Binary crossentropy between an output tensor and a target tensor.  Arguments:      target: A tensor with the same shape as `output`.      output: A tensor.      from_logits: Whether `output` is expected to be a logits tensor.          By default, we consider that `output`          encodes a probability distribution.  Returns:      A tensor.  """  # Note: nn.sigmoid_cross_entropy_with_logits  # expects logits, Keras expects probabilities.  if not from_logits:    # transform back to logits    epsilon_ = _to_tensor(epsilon(), output.dtype.base_dtype)    output = clip_ops.clip_by_value(output, epsilon_, 1 - epsilon_)    output = math_ops.log(output / (1 - output))  return nn.sigmoid_cross_entropy_with_logits(labels=target, logits=output)

可以看到源码中计算使用了nn.sigmoid_cross_entropy_with_logits,熟悉tensorflow的应该比较熟悉这个损失函数了,它可以用于简单的二分类,也可以用于多标签任务,而且应用广泛,在样本合理的情况下(如不存在类别不均衡等问题)的情况下,通常可以直接使用。

补充:keras自定义loss function的简单方法

首先看一下Keras中我们常用到的目标函数(如mse,mae等)是如何定义的

from keras import backend as Kdef mean_squared_error(y_true, y_pred):    return K.mean(K.square(y_pred - y_true), axis=-1)def mean_absolute_error(y_true, y_pred):    return K.mean(K.abs(y_pred - y_true), axis=-1)def mean_absolute_percentage_error(y_true, y_pred):    diff = K.abs((y_true - y_pred) / K.clip(K.abs(y_true), K.epsilon(), np.inf))    return 100. * K.mean(diff, axis=-1)def categorical_crossentropy(y_true, y_pred):    '''Expects a binary class matrix instead of a vector of scalar classes.    '''    return K.categorical_crossentropy(y_pred, y_true)def sparse_categorical_crossentropy(y_true, y_pred):    '''expects an array of integer classes.    Note: labels shape must have the same number of dimensions as output shape.    If you get a shape error, add a length-1 dimension to labels.    '''    return K.sparse_categorical_crossentropy(y_pred, y_true)def binary_crossentropy(y_true, y_pred):    return K.mean(K.binary_crossentropy(y_pred, y_true), axis=-1)def kullback_leibler_divergence(y_true, y_pred):    y_true = K.clip(y_true, K.epsilon(), 1)    y_pred = K.clip(y_pred, K.epsilon(), 1)    return K.sum(y_true * K.log(y_true / y_pred), axis=-1)def poisson(y_true, y_pred):    return K.mean(y_pred - y_true * K.log(y_pred + K.epsilon()), axis=-1)def cosine_proximity(y_true, y_pred):    y_true = K.l2_normalize(y_true, axis=-1)    y_pred = K.l2_normalize(y_pred, axis=-1)    return -K.mean(y_true * y_pred, axis=-1)

所以仿照以上的方法,可以自己定义特定任务的目标函数。比如:定义预测值与真实值的差

from keras import backend as Kdef new_loss(y_true,y_pred):    return K.mean((y_pred-y_true),axis = -1)

然后,应用你自己定义的目标函数进行编译

from keras import backend as Kdef my_loss(y_true,y_pred):    return K.mean((y_pred-y_true),axis = -1)model.compile(optimizer=optimizers.RMSprop(lr),loss=my_loss,metrics=['accuracy'])

以上为个人经验,希望能给大家一个参考,也希望大家多多支持51zixue.net。


selenium在scrapy中的使用代码
浅谈python数据类型及其操作
万事OK自学网:51自学网_软件自学网_CAD自学网自学excel、自学PS、自学CAD、自学C语言、自学css3实例,是一个通过网络自主学习工作技能的自学平台,网友喜欢的软件自学网站。