您当前的位置:首页 > IT编程 > python
| C语言 | Java | VB | VC | python | Android | TensorFlow | C++ | oracle | 学术与代码 | cnn卷积神经网络 | gnn | 图像修复 | Keras | 数据集 | Neo4j | 自然语言处理 | 深度学习 | 医学CAD | 医学影像 | 超参数 | pointnet | pytorch | 异常检测 | Transformers | 情感分类 | 知识图谱 |

自学教程:关于keras多任务多loss回传的思考

51自学网 2021-10-30 22:37:54
  python
这篇教程关于keras多任务多loss回传的思考写得很实用,希望能帮到您。

如果有一个多任务多loss的网络,那么在训练时,loss是如何工作的呢?

比如下面:

model = Model(inputs = input, outputs = [y1, y2])l1 = 0.5l2 = 0.3model.compile(loss = [loss1, loss2], loss_weights=[l1, l2], ...)

其实我们最终得到的loss为

final_loss = l1 * loss1 + l2 * loss2

我们最终的优化效果是最小化final_loss。

问题来了,在训练过程中,是否loss2只更新得到y2的网络通路,还是loss2会更新所有的网络层呢?

此问题的关键在梯度回传上,即反向传播算法。

在这里插入图片描述

所以loss1只对x1和x2有影响,而loss2只对x1和x3有影响。

补充:keras 多个LOSS总和定义

在这里插入图片描述

用字典形式,名字是模型中输出那一层的名字,这里的loss可以是自己定义的,也可是自带的

补充:keras实战-多类别分割loss实现

本文样例均为3d数据的onehot标签形式,即y_true(batch_size,x,y,z,class_num)

1、dice loss

def dice_coef_fun(smooth=1):    def dice_coef(y_true, y_pred):        #求得每个sample的每个类的dice        intersection = K.sum(y_true * y_pred, axis=(1,2,3))        union = K.sum(y_true, axis=(1,2,3)) + K.sum(y_pred, axis=(1,2,3))        sample_dices=(2. * intersection + smooth) / (union + smooth) #一维数组 为各个类别的dice        #求得每个类的dice        dices=K.mean(sample_dices,axis=0)        return K.mean(dices) #所有类别dice求平均的dice    return dice_coef def dice_coef_loss_fun(smooth=0):    def dice_coef_loss(y_true,y_pred):        return 1-1-dice_coef_fun(smooth=smooth)(y_true=y_true,y_pred=y_pred)    return dice_coef_loss

2、generalized dice loss

def generalized_dice_coef_fun(smooth=0):    def generalized_dice(y_true, y_pred):        # Compute weights: "the contribution of each label is corrected by the inverse of its volume"        w = K.sum(y_true, axis=(0, 1, 2, 3))        w = 1 / (w ** 2 + 0.00001)        # w为各个类别的权重,占比越大,权重越小        # Compute gen dice coef:        numerator = y_true * y_pred        numerator = w * K.sum(numerator, axis=(0, 1, 2, 3))        numerator = K.sum(numerator)         denominator = y_true + y_pred        denominator = w * K.sum(denominator, axis=(0, 1, 2, 3))        denominator = K.sum(denominator)         gen_dice_coef = numerator / denominator         return  2 * gen_dice_coef    return generalized_dice def generalized_dice_loss_fun(smooth=0):    def generalized_dice_loss(y_true,y_pred):        return 1 - generalized_dice_coef_fun(smooth=smooth)(y_true=y_true,y_pred=y_pred)    return generalized_dice_loss

3、tversky coefficient loss

# Ref: salehi17, "Twersky loss function for image segmentation using 3D FCDN"# -> the score is computed for each class separately and then summed# alpha=beta=0.5 : dice coefficient# alpha=beta=1   : tanimoto coefficient (also known as jaccard)# alpha+beta=1   : produces set of F*-scores# implemented by E. Moebel, 06/04/18def tversky_coef_fun(alpha,beta):    def tversky_coef(y_true, y_pred):        p0 = y_pred  # proba that voxels are class i        p1 = 1 - y_pred  # proba that voxels are not class i        g0 = y_true        g1 = 1 - y_true         # 求得每个sample的每个类的dice        num = K.sum(p0 * g0, axis=( 1, 2, 3))        den = num + alpha * K.sum(p0 * g1,axis= ( 1, 2, 3)) + beta * K.sum(p1 * g0, axis=( 1, 2, 3))        T = num / den  #[batch_size,class_num]                # 求得每个类的dice        dices=K.mean(T,axis=0) #[class_num]                return K.mean(dices)    return tversky_coef def tversky_coef_loss_fun(alpha,beta):    def tversky_coef_loss(y_true,y_pred):        return 1-tversky_coef_fun(alpha=alpha,beta=beta)(y_true=y_true,y_pred=y_pred)    return tversky_coef_loss

4、IoU loss

def IoU_fun(eps=1e-6):    def IoU(y_true, y_pred):        # if np.max(y_true) == 0.0:        #     return IoU(1-y_true, 1-y_pred) ## empty image; calc IoU of zeros        intersection = K.sum(y_true * y_pred, axis=[1,2,3])        union = K.sum(y_true, axis=[1,2,3]) + K.sum(y_pred, axis=[1,2,3]) - intersection        #        ious=K.mean((intersection + eps) / (union + eps),axis=0)        return K.mean(ious)    return IoU def IoU_loss_fun(eps=1e-6):    def IoU_loss(y_true,y_pred):        return 1-IoU_fun(eps=eps)(y_true=y_true,y_pred=y_pred)    return IoU_loss

以上为个人经验,希望能给大家一个参考,也希望大家多多支持51zixue.net。


Python爬虫基础之selenium库的用法总结
selenium在scrapy中的使用代码
万事OK自学网:51自学网_软件自学网_CAD自学网自学excel、自学PS、自学CAD、自学C语言、自学css3实例,是一个通过网络自主学习工作技能的自学平台,网友喜欢的软件自学网站。