这篇教程python3 hdf5文件 遍历代码写得很实用,希望能帮到您。 看代码吧~import h5pyimport numpy as npf = h5py.File('train/e1_1.hdf5')key = ""for k in f.keys(): key = kd = f[key]print(d)a = np.ones(d.shape)d.read_direct(a)print(a)f.close() 补充:HDF5 文件及Python模块之h5py HDF5文件什么是HDF5文件呢?先引用一波维基百科的介绍,『层级数据格式(Hierarchical Data Format:HDF)是设计用来存储和组织大量数据的一组文件格式(HDF4,HDF5)。 它最初开发于美国国家超级计算应用中心,现在由非营利社团HDF Group支持,其任务是确保HDF5技术的持续开发和存储在HDF中数据的持续可访问性。』。 HDF5 拥有一系列的优异特性,使其特别适合进行大量科学数据的存储和操作,如它支持非常多的数据类型,灵活,通用,跨平台,可扩展,高效的 I/O 性能,支持几乎无限量(高达 EB)的单文件存储等 如何在Linux中查看hdf5文件呢?h5ls info.h5# key1 Dataset {10000}# key2 Dataset {10000,5}# key3 Dataset {20000,30} h5py模块我们可以使用Python非常方便的读写hdf5文件,最常用的模块就是h5py。下面说明一下它的安装及使用方法: 安装模块pip install h5pypip install numpy# numpy 通常是作为配合使用 对h5py的总结:『一个 HDF5 文件是存储两类对象的容器,这两类对象分别为: dataset:类似数组的数据集合; gropp;类似目录的容器,其中可以包含一个或多个 dataset 及其它的 group。 一个 HDF5 文件从一个命名为 "/" 的 group 开始,所有的 dataset 和其它 group 都包含在此 group 下,当操作 HDF5 文件时,如果没有显式指定 group 的 dataset 都是默认指 "/" 下的 dataset,另外类似相对文件路径的 group 名字都是相对于 "/" 的。 HDF5 文件的 dataset 和 group 都可以拥有描述性的元数据,称作 attribute。 用 h5py 操作 HDF5 文件,我们可以像使用目录一样使用 group,像使用 numpy 数组一样使用 dataset,像使用字典一样使用属性,非常方便和易用。』 写入hdf5文件import h5pyimport numpy as np# 如果你要在根group下创建datasetf = h5py.File('info.h5', 'w')values1 = np.arange(12).reshape(4, 3)values2 = np.arange(20).reshape(4, 5)f.create_dataset(name='key1', data=np.array(values1, dtype='int64'))f.create_dataset(name='key2', data=np.array(values2, dtype='int64'))# 如果你要创建一个group(目录)# 然后指定dataset放置的groupf.create_group('/dir1')f.create_group('/dir1/dir2')data = np.arange(6).reshape(3, 2)f.create_dataset('/dir1/dir2', data=data)# 最后别忘了关闭文件f.close() 读取hdf5文件import h5pywith h5py.File(info.h5, 'r') as f: values1 = f['key1'].value values2 = f['key2'].value 以上为个人经验,希望能给大家一个参考,也希望大家多多支持51zixue.net。 Python基础之元组与文件知识总结 Python 读写 Matlab Mat 格式数据的操作 |