这篇教程windowns使用PySpark环境配置和基本操作写得很实用,希望能帮到您。 下载依赖
首先需要下载hadoop和spark,解压,然后设置环境变量。 hadoop清华源下载 spark清华源下载 HADOOP_HOME => /path/hadoopSPARK_HOME => /path/spark 安装pyspark。 基本使用
可以在shell终端,输入pyspark,有如下回显: 
输入以下指令进行测试,并创建SparkContext,SparkContext是任何spark功能的入口点。 >>> from pyspark import SparkContext>>> sc = SparkContext("local", "First App") 如果以上不会报错,恭喜可以开始使用pyspark编写代码了。 不过,我这里使用IDE来编写代码,首先我们先在终端执行以下代码关闭SparkContext。 下面使用pycharm编写代码,如果修改了环境变量需要先重启pycharm。 在pycharm运行如下程序,程序会起本地模式的spark计算引擎,通过spark统计abc.txt文件中a和b出现行的数量,文件路径需要自己指定。 from pyspark import SparkContextsc = SparkContext("local", "First App")logFile = "abc.txt"logData = sc.textFile(logFile).cache()numAs = logData.filter(lambda s: 'a' in s).count()numBs = logData.filter(lambda s: 'b' in s).count()print("Line with a:%i,line with b:%i" % (numAs, numBs)) 运行结果如下: 20/03/11 16:15:57 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties Setting default log level to "WARN". To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel). 20/03/11 16:15:58 WARN Utils: Service 'SparkUI' could not bind on port 4040. Attempting port 4041. Line with a:3,line with b:1
这里说一下,同样的工作使用python可以做,spark也可以做,使用spark主要是为了高效的进行分布式计算。 戳pyspark教程 戳spark教程 RDD
RDD代表Resilient Distributed Dataset,它们是在多个节点上运行和操作以在集群上进行并行处理的元素,RDD是spark计算的操作对象。 一般,我们先使用数据创建RDD,然后对RDD进行操作。 对RDD操作有两种方法: Transformation(转换) - 这些操作应用于RDD以创建新的RDD。例如filter,groupBy和map。 Action(操作) - 这些是应用于RDD的操作,它指示Spark执行计算并将结果发送回驱动程序,例如count,collect等。 创建RDD
parallelize是从列表创建RDD,先看一个例子: from pyspark import SparkContextsc = SparkContext("local", "count app")words = sc.parallelize( ["scala", "java", "hadoop", "spark", "akka", "spark vs hadoop", "pyspark", "pyspark and spark" ])print(words) 结果中我们得到一个对象,就是我们列表数据的RDD对象,spark之后可以对他进行操作。 ParallelCollectionRDD[0] at parallelize at PythonRDD.scala:195
Count
count方法返回RDD中的元素个数。 from pyspark import SparkContextsc = SparkContext("local", "count app")words = sc.parallelize( ["scala", "java", "hadoop", "spark", "akka", "spark vs hadoop", "pyspark", "pyspark and spark" ])print(words)counts = words.count()print("Number of elements in RDD -> %i" % counts) 返回结果: Number of elements in RDD -> 8
Collect
collect返回RDD中的所有元素。 from pyspark import SparkContextsc = SparkContext("local", "collect app")words = sc.parallelize( ["scala", "java", "hadoop", "spark", "akka", "spark vs hadoop", "pyspark", "pyspark and spark" ])coll = words.collect()print("Elements in RDD -> %s" % coll) 返回结果: Elements in RDD -> ['scala', 'java', 'hadoop', 'spark', 'akka', 'spark vs hadoop', 'pyspark', 'pyspark and spark']
foreach
每个元素会使用foreach内的函数进行处理,但是不会返回任何对象。 下面的程序中,我们定义的一个累加器accumulator,用于储存在foreach执行过程中的值。 from pyspark import SparkContextsc = SparkContext("local", "ForEach app")accum = sc.accumulator(0)data = [1, 2, 3, 4, 5]rdd = sc.parallelize(data)def increment_counter(x): print(x) accum.add(x) return 0s = rdd.foreach(increment_counter)print(s) # Noneprint("Counter value: ", accum) 返回结果: None Counter value: 15
filter
返回一个包含元素的新RDD,满足过滤器的条件。 from pyspark import SparkContextsc = SparkContext("local", "Filter app")words = sc.parallelize( ["scala", "java", "hadoop", "spark", "akka", "spark vs hadoop", "pyspark", "pyspark and spark"])words_filter = words.filter(lambda x: 'spark' in x)filtered = words_filter.collect()print("Fitered RDD -> %s" % (filtered)) Fitered RDD -> ['spark', 'spark vs hadoop', 'pyspark', 'pyspark and spark'] 也可以改写成这样: from pyspark import SparkContextsc = SparkContext("local", "Filter app")words = sc.parallelize( ["scala", "java", "hadoop", "spark", "akka", "spark vs hadoop", "pyspark", "pyspark and spark"])def g(x): for i in x: if "spark" in x: return iwords_filter = words.filter(g)filtered = words_filter.collect()print("Fitered RDD -> %s" % (filtered)) map
将函数应用于RDD中的每个元素并返回新的RDD。 from pyspark import SparkContextsc = SparkContext("local", "Map app")words = sc.parallelize( ["scala", "java", "hadoop", "spark", "akka", "spark vs hadoop", "pyspark", "pyspark and spark"])words_map = words.map(lambda x: (x, 1, "_{}".format(x)))mapping = words_map.collect()print("Key value pair -> %s" % (mapping)) 返回结果: Key value pair -> [('scala', 1, '_scala'), ('java', 1, '_java'), ('hadoop', 1, '_hadoop'), ('spark', 1, '_spark'), ('akka', 1, '_akka'), ('spark vs hadoop', 1, '_spark vs hadoop'), ('pyspark', 1, '_pyspark'), ('pyspark and spark', 1, '_pyspark and spark')]
Reduce
执行指定的可交换和关联二元操作后,然后返回RDD中的元素。 from pyspark import SparkContextfrom operator import addsc = SparkContext("local", "Reduce app")nums = sc.parallelize([1, 2, 3, 4, 5])adding = nums.reduce(add)print("Adding all the elements -> %i" % (adding)) 这里的add是python内置的函数,可以使用ide查看: def add(a, b): "Same as a + b." return a + b reduce会依次对元素相加,相加后的结果加上其他元素,最后返回结果(RDD中的元素)。 Adding all the elements -> 15
Join
返回RDD,包含两者同时匹配的键,键包含对应的所有元素。 from pyspark import SparkContextsc = SparkContext("local", "Join app")x = sc.parallelize([("spark", 1), ("hadoop", 4), ("python", 4)])y = sc.parallelize([("spark", 2), ("hadoop", 5)])print("x =>", x.collect())print("y =>", y.collect())joined = x.join(y)final = joined.collect()print( "Join RDD -> %s" % (final)) 返回结果: x => [('spark', 1), ('hadoop', 4), ('python', 4)] y => [('spark', 2), ('hadoop', 5)] Join RDD -> [('hadoop', (4, 5)), ('spark', (1, 2))]
到此这篇关于windowns使用PySpark环境配置和基本操作的文章就介绍到这了,更多相关PySpark环境配置 内容请搜索51zixue.net以前的文章或继续浏览下面的相关文章希望大家以后多多支持51zixue.net! 聊聊Python中end=和sep=的区别 keras的get_value运行越来越慢的解决方案 |