这篇教程pytorch常用数据类型所占字节数对照表一览写得很实用,希望能帮到您。 PyTorch上的常用数据类型如下 Data type | dtype | CPU tensor | GPU tensor | Size/bytes | 32-bit floating | torch.float32 or torch.float | torch.FloatTensor | torch.cuda.FloatTensor | 4 | 64-bit floating | torch.float64 or torch.double | torch.DoubleTensor | torch.cuda.DoubleTensor | 8 | 16-bit floating | torch.float16or torch.half | torch.HalfTensor | torch.cuda.HalfTensor | - | 8-bit integer (unsigned) | torch.uint8 | torch.ByteTensor | torch.cuda.ByteTensor | 1 | 8-bit integer (signed) | torch.int8 | torch.CharTensor | torch.cuda.CharTensor | - | 16-bit integer (signed) | torch.int16or torch.short | torch.ShortTensor | torch.cuda.ShortTensor | 2 | 32-bit integer (signed) | torch.int32 or torch.int | torch.IntTensor | torch.cuda.IntTensor | 4 | 64-bit integer (signed) | torch.int64 or torch.long | torch.LongTensor | torch.cuda.LongTensor | 8 | 以上PyTorch中的数据类型和numpy中的相对应,占用字节大小也是一样的 补充:pytorch tensor比较大小 数据类型要注意 如下a = torch.tensor([[0, 0], [0, 0]])print(a>=0.5) 输出 tensor([[1, 1], [1, 1]], dtype=torch.uint8)
结果明显不对, 分析原因是因为, a是long类型, 而0.5是float. 0.5会被转化为 long, 变为0. 因此结果会出错, 做出如下修改就可以得到正确答案 正确用法:a = torch.tensor([[0, 0], [0, 0]]).float()print(a>=0.5) 以上为个人经验,希望能给大家一个参考,也希望大家多多支持51zixue.net。 python使用tkinter实现透明窗体上绘制随机出现的小球(实例代码) pytorch实现ResNet结构的实例代码 |