您当前的位置:首页 > IT编程 > python
| C语言 | Java | VB | VC | python | Android | TensorFlow | C++ | oracle | 学术与代码 | cnn卷积神经网络 | gnn | 图像修复 | Keras | 数据集 | Neo4j | 自然语言处理 | 深度学习 | 医学CAD | 医学影像 | 超参数 | pointnet | pytorch | 异常检测 | Transformers | 情感分类 | 知识图谱 |

自学教程:pytorch 如何打印网络回传梯度

51自学网 2021-10-30 22:40:42
  python
这篇教程pytorch 如何打印网络回传梯度写得很实用,希望能帮到您。

需求:

打印梯度,检查网络学习情况

net = your_network().cuda()def train(): ... outputs = net(inputs)    loss = criterion(outputs, targets)    loss.backward() for name, parms in net.named_parameters():   print('-->name:', name, '-->grad_requirs:',parms.requires_grad, /   ' -->grad_value:',parms.grad) ...

打印结果如下:

name表示网络参数的名字; parms.requires_grad 表示该参数是否可学习,是不是frozen的; parm.grad 打印该参数的梯度值。

补充:pytorch的梯度计算

看代码吧~

import torchfrom torch.autograd import Variablex = torch.Tensor([[1.,2.,3.],[4.,5.,6.]])  #grad_fn是Nonex = Variable(x, requires_grad=True)y = x + 2z = y*y*3out = z.mean()#x->y->z->outprint(x)print(y)print(z)print(out)#结果:tensor([[1., 2., 3.],        [4., 5., 6.]], requires_grad=True)tensor([[3., 4., 5.],        [6., 7., 8.]], grad_fn=<AddBackward>)tensor([[ 27.,  48.,  75.],        [108., 147., 192.]], grad_fn=<MulBackward>)tensor(99.5000, grad_fn=<MeanBackward1>)

若是关于graph leaves求导的结果变量是一个标量,那么gradient默认为None,或者指定为“torch.Tensor([1.0])”

若是关于graph leaves求导的结果变量是一个向量,那么gradient是不能缺省的,要是和该向量同纬度的tensor

out.backward()print(x.grad)#结果:tensor([[3., 4., 5.],        [6., 7., 8.]])#如果是z关于x求导就必须指定gradient参数:gradients = torch.Tensor([[2.,1.,1.],[1.,1.,1.]])z.backward(gradient=gradients)#若z不是一个标量,那么就先构造一个标量的值:L = torch.sum(z*gradient),再关于L对各个leaf Variable计算梯度#对x关于L求梯度x.grad#结果:tensor([[36., 24., 30.],        [36., 42., 48.]])

错误情况

z.backward()print(x.grad) #报错:RuntimeError: grad can be implicitly created only for scalar outputs只能为标量创建隐式变量    x1 = Variable(torch.Tensor([[1.,2.,3.],[4.,5.,6.]])) x2 = Variable(torch.arange(4).view(2,2).type(torch.float), requires_grad=True)c = x2.mm(x1)c.backward(torch.ones_like(c))# c.backward()#RuntimeError: grad can be implicitly created only for scalar outputsprint(x2.grad)

从上面的例子中,out是常量,可以默认创建隐变量,如果反向传播的不是常量,要知道该矩阵的具体值,在网络中就是loss矩阵,方向传播的过程中就是拿该归一化的损失乘梯度来更新各神经元的参数。

看到一个博客这样说:loss = criterion(outputs, labels)对应loss += (label[k] - h) * (label[k] - h) / 2

就是求loss(其实我觉得这一步不用也可以,反向传播时用不到loss值,只是为了让我们知道当前的loss是多少)

我认为一定是要求loss的具体值,才能对比阈值进行分类,通过非线性激活函数,判断是否激活。

以上为个人经验,希望能给大家一个参考,也希望大家多多支持51zixue.net。


Pytorch中求模型准确率的两种方法小结
Flask登录注册项目的简单实现
万事OK自学网:51自学网_软件自学网_CAD自学网自学excel、自学PS、自学CAD、自学C语言、自学css3实例,是一个通过网络自主学习工作技能的自学平台,网友喜欢的软件自学网站。