您当前的位置:首页 > IT编程 > python
| C语言 | Java | VB | VC | python | Android | TensorFlow | C++ | oracle | 学术与代码 | cnn卷积神经网络 | gnn | 图像修复 | Keras | 数据集 | Neo4j | 自然语言处理 | 深度学习 | 医学CAD | 医学影像 | 超参数 | pointnet | pytorch | 异常检测 | Transformers | 情感分类 | 知识图谱 |

自学教程:pytorch 中autograd.grad()函数的用法说明

51自学网 2021-10-30 22:40:56
  python
这篇教程pytorch 中autograd.grad()函数的用法说明写得很实用,希望能帮到您。

我们在用神经网络求解PDE时, 经常要用到输出值对输入变量不是Weights和Biases)求导; 在训练WGAN-GP 时, 也会用到网络对输入变量的求导。

以上两种需求, 均可以用pytorch 中的autograd.grad() 函数实现。

autograd.grad(outputs, inputs, grad_outputs=None, retain_graph=None, create_graph=False, only_inputs=True, allow_unused=False)

outputs: 求导的因变量(需要求导的函数)

inputs: 求导的自变量

grad_outputs: 如果 outputs为标量,则grad_outputs=None,也就是说,可以不用写; 如果outputs 是向量,则此参数必须写,不写将会报如下错误:

那么此参数究竟代表着什么呢?

先假设 为一维向量, 即可设自变量因变量分别为 , 其对应的 Jacobi 矩阵为

grad_outputs 是一个shape 与 outputs 一致的向量, 即

在给定grad_outputs 之后,真正返回的梯度为

为方便下文叙述我们引入记号

其次假设 ,第i个列向量对应的Jacobi矩阵为

此时的grad_outputs 为(维度与outputs一致)

由第一种情况, 我们有

也就是说对输出变量的列向量求导,再经过权重累加。

沿用第一种情况记号

, 其中每一个 均由第一种方法得出,

即对输入变量列向量求导,之后按照原先顺序排列即可。

retain_graph: True 则保留计算图, False则释放计算图

create_graph: 若要计算高阶导数,则必须选为True

allow_unused: 允许输入变量不进入计算

下面我们看一下具体的例子:

import torchfrom torch import autograd x = torch.rand(3, 4)x.requires_grad_()

观察 x 为

不妨设 y 是 x 所有元素的和, 因为 y是标量,故计算导数不需要设置grad_outputs

y = torch.sum(x)grads = autograd.grad(outputs=y, inputs=x)[0]print(grads)

结果为

若y是向量

y = x[:,0] +x[:,1]# 设置输出权重为1grad = autograd.grad(outputs=y, inputs=x, grad_outputs=torch.ones_like(y))[0]print(grad)# 设置输出权重为0grad = autograd.grad(outputs=y, inputs=x, grad_outputs=torch.zeros_like(y))[0]print(grad)

结果为

最后, 我们通过设置 create_graph=True 来计算二阶导数

y = x ** 2grad = autograd.grad(outputs=y, inputs=x, grad_outputs=torch.ones_like(y), create_graph=True)[0]grad2 = autograd.grad(outputs=grad, inputs=x, grad_outputs=torch.ones_like(grad))[0]print(grad2)

结果为

综上,我们便搞清楚了它的求导机制。

补充:pytorch学习笔记:自动微分机制(backward、torch.autograd.grad)

一、前言

神经网络通常依赖反向传播求梯度来更新网络参数,求梯度过程通常是一件非常复杂而容易出错的事情。

而深度学习框架可以帮助我们自动地完成这种求梯度运算。

Pytorch一般通过反向传播 backward方法 实现这种求梯度计算。该方法求得的梯度将存在对应自变量张量的grad属性下。

除此之外,也能够调用torch.autograd.grad函数来实现求梯度计算。

这就是Pytorch的自动微分机制。

二、利用backward方法求导数

backward方法通常在一个标量张量上调用,该方法求得的梯度将存在对应自变量张量的grad属性下。如果调用的张量非标量,则要传入一个和它同形状的gradient参数张量。相当于用该gradient参数张量与调用张量作向量点乘,得到的标量结果再反向传播。

1, 标量的反向传播

import numpy as np import torch # f(x) = a*x**2 + b*x + c的导数x = torch.tensor(0.0,requires_grad = True) # x需要被求导a = torch.tensor(1.0)b = torch.tensor(-2.0)c = torch.tensor(1.0)y = a*torch.pow(x,2) + b*x + c y.backward()dy_dx = x.gradprint(dy_dx)

输出:

tensor(-2.)

2, 非标量的反向传播

import numpy as np import torch # f(x) = a*x**2 + b*x + cx = torch.tensor([[0.0,0.0],[1.0,2.0]],requires_grad = True) # x需要被求导a = torch.tensor(1.0)b = torch.tensor(-2.0)c = torch.tensor(1.0)y = a*torch.pow(x,2) + b*x + c gradient = torch.tensor([[1.0,1.0],[1.0,1.0]])print("x:/n",x)print("y:/n",y)y.backward(gradient = gradient)x_grad = x.gradprint("x_grad:/n",x_grad)

输出:

x:

tensor([[0., 0.],

[1., 2.]], requires_grad=True)

y:

tensor([[1., 1.],

[0., 1.]], grad_fn=<AddBackward0>)

x_grad:

tensor([[-2., -2.],

[ 0., 2.]])

3, 非标量的反向传播可以用标量的反向传播实现

import numpy as np import torch # f(x) = a*x**2 + b*x + cx = torch.tensor([[0.0,0.0],[1.0,2.0]],requires_grad = True) # x需要被求导a = torch.tensor(1.0)b = torch.tensor(-2.0)c = torch.tensor(1.0)y = a*torch.pow(x,2) + b*x + c gradient = torch.tensor([[1.0,1.0],[1.0,1.0]])z = torch.sum(y*gradient)print("x:",x)print("y:",y)z.backward()x_grad = x.gradprint("x_grad:/n",x_grad)

输出:

x: tensor([[0., 0.],

[1., 2.]], requires_grad=True)

y: tensor([[1., 1.],

[0., 1.]], grad_fn=<AddBackward0>)

x_grad:

tensor([[-2., -2.],

[ 0., 2.]])

三、利用autograd.grad方法求导数

import numpy as np import torch # f(x) = a*x**2 + b*x + c的导数x = torch.tensor(0.0,requires_grad = True) # x需要被求导a = torch.tensor(1.0)b = torch.tensor(-2.0)c = torch.tensor(1.0)y = a*torch.pow(x,2) + b*x + c# create_graph 设置为 True 将允许创建更高阶的导数 dy_dx = torch.autograd.grad(y,x,create_graph=True)[0]print(dy_dx.data)# 求二阶导数dy2_dx2 = torch.autograd.grad(dy_dx,x)[0] print(dy2_dx2.data)

输出:

tensor(-2.)

tensor(2.)

import numpy as np import torch x1 = torch.tensor(1.0,requires_grad = True) # x需要被求导x2 = torch.tensor(2.0,requires_grad = True)y1 = x1*x2y2 = x1+x2# 允许同时对多个自变量求导数(dy1_dx1,dy1_dx2) = torch.autograd.grad(outputs=y1,                inputs = [x1,x2],retain_graph = True)print(dy1_dx1,dy1_dx2)# 如果有多个因变量,相当于把多个因变量的梯度结果求和(dy12_dx1,dy12_dx2) = torch.autograd.grad(outputs=[y1,y2],            inputs = [x1,x2])print(dy12_dx1,dy12_dx2)

输出:

tensor(2.) tensor(1.)

tensor(3.) tensor(2.)

四、利用自动微分和优化器求最小值

import numpy as np import torch # f(x) = a*x**2 + b*x + c的最小值x = torch.tensor(0.0,requires_grad = True) # x需要被求导a = torch.tensor(1.0)b = torch.tensor(-2.0)c = torch.tensor(1.0)optimizer = torch.optim.SGD(params=[x],lr = 0.01)def f(x):    result = a*torch.pow(x,2) + b*x + c     return(result)for i in range(500):    optimizer.zero_grad()    y = f(x)    y.backward()    optimizer.step()       print("y=",f(x).data,";","x=",x.data)

输出:

y= tensor(0.) ; x= tensor(1.0000)

以上为个人经验,希望能给大家一个参考,也希望大家多多支持51zixue.net。如有错误或未考虑完全的地方,望不吝赐教。


python3实现无权最短路径的方法
python3实现Dijkstra算法最短路径的实现
万事OK自学网:51自学网_软件自学网_CAD自学网自学excel、自学PS、自学CAD、自学C语言、自学css3实例,是一个通过网络自主学习工作技能的自学平台,网友喜欢的软件自学网站。