您当前的位置:首页 > IT编程 > python
| C语言 | Java | VB | VC | python | Android | TensorFlow | C++ | oracle | 学术与代码 | cnn卷积神经网络 | gnn | 图像修复 | Keras | 数据集 | Neo4j | 自然语言处理 | 深度学习 | 医学CAD | 医学影像 | 超参数 | pointnet | pytorch | 异常检测 | Transformers | 情感分类 | 知识图谱 |

自学教程:pytorch 禁止/允许计算局部梯度的操作

51自学网 2021-10-30 22:41:01
  python
这篇教程pytorch 禁止/允许计算局部梯度的操作写得很实用,希望能帮到您。

一、禁止计算局部梯度

torch.autogard.no_grad: 禁用梯度计算的上下文管理器。

当确定不会调用Tensor.backward()计算梯度时,设置禁止计算梯度会减少内存消耗。如果需要计算梯度设置Tensor.requires_grad=True

两种禁用方法:

将不用计算梯度的变量放在with torch.no_grad()里

>>> x = torch.tensor([1.], requires_grad=True)>>> with torch.no_grad():...   y = x * 2>>> y.requires_gradOut[12]:False

使用装饰器 @torch.no_gard()修饰的函数,在调用时不允许计算梯度

>>> @torch.no_grad()... def doubler(x):...     return x * 2>>> z = doubler(x)>>> z.requires_gradOut[13]:False

二、禁止后允许计算局部梯度

torch.autogard.enable_grad :允许计算梯度的上下文管理器

在一个no_grad上下文中使能梯度计算。在no_grad外部此上下文管理器无影响.

用法和上面类似:

使用with torch.enable_grad()允许计算梯度

>>> x = torch.tensor([1.], requires_grad=True)>>> with torch.no_grad():...   with torch.enable_grad():...     y = x * 2>>> y.requires_gradOut[14]:True >>> y.backward()  # 计算梯度>>> x.gradOut[15]: tensor([2.])

在禁止计算梯度下调用被允许计算梯度的函数,结果可以计算梯度

>>> @torch.enable_grad()... def doubler(x):...     return x * 2 >>> with torch.no_grad():...     z = doubler(x)>>> z.requires_grad Out[16]:True

三、是否计算梯度

torch.autograd.set_grad_enable()

可以作为一个函数使用:

>>> x = torch.tensor([1.], requires_grad=True)>>> is_train = False>>> with torch.set_grad_enabled(is_train):...   y = x * 2>>> y.requires_gradOut[17]:False >>> torch.set_grad_enabled(True)>>> y = x * 2>>> y.requires_gradOut[18]:True >>> torch.set_grad_enabled(False)>>> y = x * 2>>> y.requires_gradOut[19]:False

总结:

单独使用这三个函数时没有什么,但是若是嵌套,遵循就近原则。

x = torch.tensor([1.], requires_grad=True) with torch.enable_grad():    torch.set_grad_enabled(False)    y = x * 2    print(y.requires_grad)Out[20]: False torch.set_grad_enabled(True)with torch.no_grad():    z = x * 2    print(z.requires_grad)Out[21]:False

补充:pytorch局部范围内禁用梯度计算,no_grad、enable_grad、set_grad_enabled使用举例

在这里插入图片描述 在这里插入图片描述

原文及翻译

Locally disabling gradient computation在局部区域内关闭(禁用)梯度的计算.The context managers torch.no_grad(), torch.enable_grad(), and torch.set_grad_enabled() are helpful for locally disabling and enabling gradient computation. See Locally disabling gradient computation for more details on their usage. These context managers are thread local, so they won't work if you send work to another thread using the threading module, etc.上下文管理器torch.no_grad()、torch.enable_grad()和torch.set_grad_enabled()可以用来在局部范围内启用或禁用梯度计算.在Locally disabling gradient computation章节中详细介绍了局部禁用梯度计算的使用方式.这些上下文管理器具有线程局部性,因此,如果你使用threading模块来将工作负载发送到另一个线程,这些上下文管理器将不会起作用.no_grad   Context-manager that disabled gradient calculation.no_grad   用于禁用梯度计算的上下文管理器.enable_grad  Context-manager that enables gradient calculation.enable_grad  用于启用梯度计算的上下文管理器.set_grad_enabled  Context-manager that sets gradient calculation to on or off.set_grad_enabled  用于设置梯度计算打开或关闭状态的上下文管理器.

例子1

Microsoft Windows [版本 10.0.18363.1440](c) 2019 Microsoft Corporation。保留所有权利。C:/Users/chenxuqi>conda activate pytorch_1.7.1_cu102(pytorch_1.7.1_cu102) C:/Users/chenxuqi>pythonPython 3.7.9 (default, Aug 31 2020, 17:10:11) [MSC v.1916 64 bit (AMD64)] :: Anaconda, Inc. on win32Type "help", "copyright", "credits" or "license" for more information.>>> import torch>>> torch.manual_seed(seed=20200910)<torch._C.Generator object at 0x000001A2E55A8870>>>> a = torch.randn(3,4,requires_grad=True)>>> atensor([[ 0.2824, -0.3715,  0.9088, -1.7601],        [-0.1806,  2.0937,  1.0406, -1.7651],        [ 1.1216,  0.8440,  0.1783,  0.6859]], requires_grad=True)>>> b = a * 2>>> btensor([[ 0.5648, -0.7430,  1.8176, -3.5202],        [-0.3612,  4.1874,  2.0812, -3.5303],        [ 2.2433,  1.6879,  0.3567,  1.3718]], grad_fn=<MulBackward0>)>>> b.requires_gradTrue>>> b.grad__main__:1: UserWarning: The .grad attribute of a Tensor that is not a leaf Tensor is being accessed. Its .grad attribute won't be populated during autograd.backward(). If you indeed want the gradient for a non-leaf Tensor, use .retain_grad() on the non-leaf Tensor. If you access the non-leaf Tensor by mistake, make sure you access the leaf Tensor instead. See github.com/pytorch/pytorch/pull/30531 for more informations.>>> print(b.grad)None>>> a.requires_gradTrue>>> a.grad>>> print(a.grad)None>>>>>> with torch.no_grad():...     c = a * 2...>>> ctensor([[ 0.5648, -0.7430,  1.8176, -3.5202],        [-0.3612,  4.1874,  2.0812, -3.5303],        [ 2.2433,  1.6879,  0.3567,  1.3718]])>>> c.requires_gradFalse>>> print(c.grad)None>>> a.grad>>>>>> print(a.grad)None>>> c.sum()tensor(6.1559)>>>>>> c.sum().backward()Traceback (most recent call last):  File "<stdin>", line 1, in <module>  File "D:/Anaconda3/envs/pytorch_1.7.1_cu102/lib/site-packages/torch/tensor.py", line 221, in backward    torch.autograd.backward(self, gradient, retain_graph, create_graph)  File "D:/Anaconda3/envs/pytorch_1.7.1_cu102/lib/site-packages/torch/autograd/__init__.py", line 132, in backward    allow_unreachable=True)  # allow_unreachable flagRuntimeError: element 0 of tensors does not require grad and does not have a grad_fn>>>>>>>>> b.sum()tensor(6.1559, grad_fn=<SumBackward0>)>>> b.sum().backward()>>>>>>>>> a.gradtensor([[2., 2., 2., 2.],        [2., 2., 2., 2.],        [2., 2., 2., 2.]])>>> a.requires_gradTrue>>>>>>

例子2

Microsoft Windows [版本 10.0.18363.1440](c) 2019 Microsoft Corporation。保留所有权利。C:/Users/chenxuqi>conda activate pytorch_1.7.1_cu102(pytorch_1.7.1_cu102) C:/Users/chenxuqi>pythonPython 3.7.9 (default, Aug 31 2020, 17:10:11) [MSC v.1916 64 bit (AMD64)] :: Anaconda, Inc. on win32Type "help", "copyright", "credits" or "license" for more information.>>> import torch>>> torch.manual_seed(seed=20200910)<torch._C.Generator object at 0x000002109ABC8870>>>>>>> a = torch.randn(3,4,requires_grad=True)>>> atensor([[ 0.2824, -0.3715,  0.9088, -1.7601],        [-0.1806,  2.0937,  1.0406, -1.7651],        [ 1.1216,  0.8440,  0.1783,  0.6859]], requires_grad=True)>>> a.requires_gradTrue>>>>>> with torch.set_grad_enabled(False):...     b = a * 2...>>> btensor([[ 0.5648, -0.7430,  1.8176, -3.5202],        [-0.3612,  4.1874,  2.0812, -3.5303],        [ 2.2433,  1.6879,  0.3567,  1.3718]])>>> b.requires_gradFalse>>>>>> with torch.set_grad_enabled(True):...     c = a * 3...>>> ctensor([[ 0.8472, -1.1145,  2.7263, -5.2804],        [-0.5418,  6.2810,  3.1219, -5.2954],        [ 3.3649,  2.5319,  0.5350,  2.0576]], grad_fn=<MulBackward0>)>>> c.requires_gradTrue>>>>>> d = a * 4>>> d.requires_gradTrue>>>>>> torch.set_grad_enabled(True)  # this can also be used as a function<torch.autograd.grad_mode.set_grad_enabled object at 0x00000210983982C8>>>>>>> # 以函数调用的方式来使用>>>>>> e = a * 5>>> etensor([[ 1.4119, -1.8574,  4.5439, -8.8006],        [-0.9030, 10.4684,  5.2031, -8.8257],        [ 5.6082,  4.2198,  0.8917,  3.4294]], grad_fn=<MulBackward0>)>>> e.requires_gradTrue>>>>>> dtensor([[ 1.1296, -1.4859,  3.6351, -7.0405],        [-0.7224,  8.3747,  4.1625, -7.0606],        [ 4.4866,  3.3759,  0.7133,  2.7435]], grad_fn=<MulBackward0>)>>>>>> torch.set_grad_enabled(False) # 以函数调用的方式来使用<torch.autograd.grad_mode.set_grad_enabled object at 0x0000021098394C48>>>>>>> f = a * 6>>> ftensor([[  1.6943,  -2.2289,   5.4527, -10.5607],        [ -1.0836,  12.5621,   6.2437, -10.5908],        [  6.7298,   5.0638,   1.0700,   4.1153]])>>> f.requires_gradFalse>>>>>>>>>

以上为个人经验,希望能给大家一个参考,也希望大家多多支持51zixue.net。如有错误或未考虑完全的地方,望不吝赐教。


如何利用Pytorch计算三角函数
django filters实现数据过滤的示例代码
万事OK自学网:51自学网_软件自学网_CAD自学网自学excel、自学PS、自学CAD、自学C语言、自学css3实例,是一个通过网络自主学习工作技能的自学平台,网友喜欢的软件自学网站。