这篇教程Python3 常用数据标准化方法详解写得很实用,希望能帮到您。 数据标准化是机器学习、数据挖掘中常用的一种方法。包括我自己在做深度学习方面的研究时,数据标准化是最基本的一个步骤。 数据标准化主要是应对特征向量中数据很分散的情况,防止小数据被大数据(绝对值)吞并的情况。 另外,数据标准化也有加速训练,防止梯度爆炸的作用。 下面是从李宏毅教授视频中截下来的两张图。 
左图表示未经过数据标准化处理的loss更新函数,右图表示经过数据标准化后的loss更新图。可见经过标准化后的数据更容易迭代到最优点,而且收敛更快。 一、[0, 1] 标准化[0, 1] 标准化是最基本的一种数据标准化方法,指的是将数据压缩到0~1之间。 标准化公式如下 
代码实现 def MaxMinNormalization(x, min, max): """[0,1] normaliaztion""" x = (x - min) / (max - min) return x 或者 def MaxMinNormalization(x): """[0,1] normaliaztion""" x = (x - np.min(x)) / (np.max(x) - np.min(x)) return x 二、Z-score标准化Z-score标准化是基于数据均值和方差的标准化化方法。标准化后的数据是均值为0,方差为1的正态分布。这种方法要求原始数据的分布可以近似为高斯分布,否则效果会很差。 标准化公式如下 
下面,我们看看为什么经过这种标准化方法处理后的数据为是均值为0,方差为1 
代码实现 def ZscoreNormalization(x, mean_, std_): """Z-score normaliaztion""" x = (x - mean_) / std_ return x 或者 def ZscoreNormalization(x): """Z-score normaliaztion""" x = (x - np.mean(x)) / np.std(x) return x 补充:Python数据预处理:彻底理解标准化和归一化 数据预处理数据中不同特征的量纲可能不一致,数值间的差别可能很大,不进行处理可能会影响到数据分析的结果,因此,需要对数据按照一定比例进行缩放,使之落在一个特定的区域,便于进行综合分析。 常用的方法有两种:最大 - 最小规范化:对原始数据进行线性变换,将数据映射到[0,1]区间 
Z-Score标准化:将原始数据映射到均值为0、标准差为1的分布上 
为什么要标准化/归一化?提升模型精度:标准化/归一化后,不同维度之间的特征在数值上有一定比较性,可以大大提高分类器的准确性。 加速模型收敛:标准化/归一化后,最优解的寻优过程明显会变得平缓,更容易正确的收敛到最优解。 如下图所示: 

哪些机器学习算法需要标准化和归一化1)需要使用梯度下降和计算距离的模型要做归一化,因为不做归一化会使收敛的路径程z字型下降,导致收敛路径太慢,而且不容易找到最优解,归一化之后加快了梯度下降求最优解的速度,并有可能提高精度。比如说线性回归、逻辑回归、adaboost、xgboost、GBDT、SVM、NeuralNetwork等。需要计算距离的模型需要做归一化,比如说KNN、KMeans等。 2)概率模型、树形结构模型不需要归一化,因为它们不关心变量的值,而是关心变量的分布和变量之间的条件概率,如决策树、随机森林。 
彻底理解标准化和归一化
示例数据集包含一个自变量(已购买)和三个因变量(国家,年龄和薪水),可以看出用薪水范围比年龄宽的多,如果直接将数据用于机器学习模型(比如KNN、KMeans),模型将完全有薪水主导。 #导入数据import numpy as npimport matplotlib.pyplot as pltimport pandas as pddf = pd.read_csv('Data.csv') 缺失值均值填充,处理字符型变量df['Salary'].fillna((df['Salary'].mean()), inplace= True)df['Age'].fillna((df['Age'].mean()), inplace= True)df['Purchased'] = df['Purchased'].apply(lambda x: 0 if x=='No' else 1)df=pd.get_dummies(data=df, columns=['Country']) 
最大 - 最小规范化from sklearn.preprocessing import MinMaxScalerscaler = MinMaxScaler()scaler.fit(df)scaled_features = scaler.transform(df)df_MinMax = pd.DataFrame(data=scaled_features, columns=["Age", "Salary","Purchased","Country_France","Country_Germany", "Country_spain"]) 
Z-Score标准化from sklearn.preprocessing import StandardScalersc_X = StandardScaler()sc_X = sc_X.fit_transform(df)sc_X = pd.DataFrame(data=sc_X, columns=["Age", "Salary","Purchased","Country_France","Country_Germany", "Country_spain"]) 
import seaborn as snsimport matplotlib.pyplot as pltimport statisticsplt.rcParams['font.sans-serif'] = ['Microsoft YaHei']fig,axes=plt.subplots(2,3,figsize=(18,12)) sns.distplot(df['Age'], ax=axes[0, 0])sns.distplot(df_MinMax['Age'], ax=axes[0, 1])axes[0, 1].set_title('归一化方差:% s '% (statistics.stdev(df_MinMax['Age'])))sns.distplot(sc_X['Age'], ax=axes[0, 2])axes[0, 2].set_title('标准化方差:% s '% (statistics.stdev(sc_X['Age'])))sns.distplot(df['Salary'], ax=axes[1, 0])sns.distplot(df_MinMax['Salary'], ax=axes[1, 1])axes[1, 1].set_title('MinMax:Salary')axes[1, 1].set_title('归一化方差:% s '% (statistics.stdev(df_MinMax['Salary'])))sns.distplot(sc_X['Salary'], ax=axes[1, 2])axes[1, 2].set_title('StandardScaler:Salary')axes[1, 2].set_title('标准化方差:% s '% (statistics.stdev(sc_X['Salary']))) 可以看出归一化比标准化方法产生的标准差小,使用归一化来缩放数据,则数据将更集中在均值附近。这是由于归一化的缩放是“拍扁”统一到区间(仅由极值决定),而标准化的缩放是更加“弹性”和“动态”的,和整体样本的分布有很大的关系。 所以归一化不能很好地处理离群值,而标准化对异常值的鲁棒性强,在许多情况下,它优于归一化。 以上为个人经验,希望能给大家一个参考,也希望大家多多支持51zixue.net。如有错误或未考虑完全的地方,望不吝赐教。 jupyter notebook中图片显示不出来的解决 解决jupyter (python3) 读取文件遇到的问题 |