您当前的位置:首页 > IT编程 > python
| C语言 | Java | VB | VC | python | Android | TensorFlow | C++ | oracle | 学术与代码 | cnn卷积神经网络 | gnn | 图像修复 | Keras | 数据集 | Neo4j | 自然语言处理 | 深度学习 | 医学CAD | 医学影像 | 超参数 | pointnet | pytorch | 异常检测 | Transformers | 情感分类 | 知识图谱 |

自学教程:pytorch Dataset,DataLoader产生自定义的训练数据案例

51自学网 2021-10-30 22:53:40
  python
这篇教程pytorch Dataset,DataLoader产生自定义的训练数据案例写得很实用,希望能帮到您。

1. torch.utils.data.Dataset

datasets这是一个pytorch定义的dataset的源码集合。下面是一个自定义Datasets的基本框架,初始化放在__init__()中,其中__getitem__()和__len__()两个方法是必须重写的。

__getitem__()返回训练数据,如图片和label,而__len__()返回数据长度。

class CustomDataset(data.Dataset):#需要继承data.Dataset def __init__(self):  # TODO  # 1. Initialize file path or list of file names.  pass def __getitem__(self, index):  # TODO  # 1. Read one data from file (e.g. using numpy.fromfile, PIL.Image.open).  # 2. Preprocess the data (e.g. torchvision.Transform).  # 3. Return a data pair (e.g. image and label).  #这里需要注意的是,第一步:read one data,是一个data  pass def __len__(self):  # You should change 0 to the total size of your dataset.  return 0

2. torch.utils.data.DataLoader

DataLoader(object)可用参数:

dataset(Dataset) 传入的数据集

batch_size(int, optional)每个batch有多少个样本

shuffle(bool, optional)在每个epoch开始的时候,对数据进行重新排序

sampler(Sampler, optional) 自定义从数据集中取样本的策略,如果指定这个参数,那么shuffle必须为False

batch_sampler(Sampler, optional) 与sampler类似,但是一次只返回一个batch的indices(索引),需要注意的是,一旦指定了这个参数,那么batch_size,shuffle,sampler,drop_last就不能再制定了(互斥——Mutually exclusive)

num_workers (int, optional) 这个参数决定了有几个进程来处理data loading。0意味着所有的数据都会被load进主进程。(默认为0)

collate_fn (callable, optional) 将一个list的sample组成一个mini-batch的函数

pin_memory (bool, optional) 如果设置为True,那么data loader将会在返回它们之前,将tensors拷贝到CUDA中的固定内存(CUDA pinned memory)中.

drop_last (bool, optional) 如果设置为True:这个是对最后的未完成的batch来说的,比如你的batch_size设置为64,而一个epoch只有100个样本,那么训练的时候后面的36个就被扔掉了。 如果为False(默认),那么会继续正常执行,只是最后的batch_size会小一点。

timeout(numeric, optional) 如果是正数,表明等待从worker进程中收集一个batch等待的时间,若超出设定的时间还没有收集到,那就不收集这个内容了。这个numeric应总是大于等于0。默认为0

worker_init_fn (callable, optional) 每个worker初始化函数 If not None, this will be called on eachworker subprocess with the worker id (an int in [0, num_workers - 1]) as input, after seeding and before data loading. (default: None)

3. 使用Dataset, DataLoader产生自定义训练数据

假设TXT文件保存了数据的图片和label,格式如下:第一列是图片的名字,第二列是label

0.jpg 01.jpg 12.jpg 23.jpg 34.jpg 45.jpg 56.jpg 67.jpg 78.jpg 89.jpg 9

也可以是多标签的数据,如:

0.jpg 0 101.jpg 1 112.jpg 2 123.jpg 3 134.jpg 4 145.jpg 5 156.jpg 6 167.jpg 7 178.jpg 8 189.jpg 9 19

图库十张原始图片放在./dataset/images目录下,然后我们就可以自定义一个Dataset解析这些数据并读取图片,再使用DataLoader类产生batch的训练数据

3.1 自定义Dataset

首先先自定义一个TorchDataset类,用于读取图片数据,产生标签:

注意初始化函数:

import torchfrom torch.autograd import Variablefrom torchvision import transformsfrom torch.utils.data import Dataset, DataLoaderimport numpy as npfrom utils import image_processingimport os class TorchDataset(Dataset): def __init__(self, filename, image_dir, resize_height=256, resize_width=256, repeat=1):  '''  :param filename: 数据文件TXT:格式:imge_name.jpg label1_id labe2_id  :param image_dir: 图片路径:image_dir+imge_name.jpg构成图片的完整路径  :param resize_height 为None时,不进行缩放  :param resize_width 为None时,不进行缩放,        PS:当参数resize_height或resize_width其中一个为None时,可实现等比例缩放  :param repeat: 所有样本数据重复次数,默认循环一次,当repeat为None时,表示无限循环<sys.maxsize  '''  self.image_label_list = self.read_file(filename)  self.image_dir = image_dir  self.len = len(self.image_label_list)  self.repeat = repeat  self.resize_height = resize_height  self.resize_width = resize_width   # 相关预处理的初始化  '''class torchvision.transforms.ToTensor'''  # 把shape=(H,W,C)的像素值范围为[0, 255]的PIL.Image或者numpy.ndarray数据  # 转换成shape=(C,H,W)的像素数据,并且被归一化到[0.0, 1.0]的torch.FloatTensor类型。  self.toTensor = transforms.ToTensor()   '''class torchvision.transforms.Normalize(mean, std)  此转换类作用于torch. * Tensor,给定均值(R, G, B) 和标准差(R, G, B),  用公式channel = (channel - mean) / std进行规范化。  '''  # self.normalize=transforms.Normalize()  def __getitem__(self, i):  index = i % self.len  # print("i={},index={}".format(i, index))  image_name, label = self.image_label_list[index]  image_path = os.path.join(self.image_dir, image_name)  img = self.load_data(image_path, self.resize_height, self.resize_width, normalization=False)  img = self.data_preproccess(img)  label=np.array(label)  return img, label  def __len__(self):  if self.repeat == None:   data_len = 10000000  else:   data_len = len(self.image_label_list) * self.repeat  return data_len  def read_file(self, filename):  image_label_list = []  with open(filename, 'r') as f:   lines = f.readlines()   for line in lines:    # rstrip:用来去除结尾字符、空白符(包括/n、/r、/t、' ',即:换行、回车、制表符、空格)    content = line.rstrip().split(' ')    name = content[0]    labels = []    for value in content[1:]:     labels.append(int(value))    image_label_list.append((name, labels))  return image_label_list  def load_data(self, path, resize_height, resize_width, normalization):  '''  加载数据  :param path:  :param resize_height:  :param resize_width:  :param normalization: 是否归一化  :return:  '''  image = image_processing.read_image(path, resize_height, resize_width, normalization)  return image  def data_preproccess(self, data):  '''  数据预处理  :param data:  :return:  '''  data = self.toTensor(data)  return data

3.2 DataLoader产生批训练数据

if __name__=='__main__': train_filename="../dataset/train.txt" # test_filename="../dataset/test.txt" image_dir='../dataset/images'  epoch_num=2 #总样本循环次数 batch_size=7 #训练时的一组数据的大小 train_data_nums=10 max_iterate=int((train_data_nums+batch_size-1)/batch_size*epoch_num) #总迭代次数  train_data = TorchDataset(filename=train_filename, image_dir=image_dir,repeat=1) # test_data = TorchDataset(filename=test_filename, image_dir=image_dir,repeat=1) train_loader = DataLoader(dataset=train_data, batch_size=batch_size, shuffle=False) # test_loader = DataLoader(dataset=test_data, batch_size=batch_size,shuffle=False)  # [1]使用epoch方法迭代,TorchDataset的参数repeat=1 for epoch in range(epoch_num):  for batch_image, batch_label in train_loader:   image=batch_image[0,:]   image=image.numpy()#image=np.array(image)   image = image.transpose(1, 2, 0) # 通道由[c,h,w]->[h,w,c]   image_processing.cv_show_image("image",image)   print("batch_image.shape:{},batch_label:{}".format(batch_image.shape,batch_label))   # batch_x, batch_y = Variable(batch_x), Variable(batch_y)

上面的迭代代码是通过两个for实现,其中参数epoch_num表示总样本循环次数,比如epoch_num=2,那就是所有样本循环迭代2次。

但这会出现一个问题,当样本总数train_data_nums与batch_size不能整取时,最后一个batch会少于规定batch_size的大小,比如这里样本总数train_data_nums=10,batch_size=7,第一次迭代会产生7个样本,第二次迭代会因为样本不足,只能产生3个样本。

我们希望,每次迭代都会产生相同大小的batch数据,因此可以如下迭代:注意本人在构造TorchDataset类时,就已经考虑循环迭代的方法,因此,你现在只需修改repeat为None时,就表示无限循环了,调用方法如下:

 ''' 下面两种方式,TorchDataset设置repeat=None可以实现无限循环,退出循环由max_iterate设定 ''' train_data = TorchDataset(filename=train_filename, image_dir=image_dir,repeat=None) train_loader = DataLoader(dataset=train_data, batch_size=batch_size, shuffle=False) # [2]第2种迭代方法 for step, (batch_image, batch_label) in enumerate(train_loader):  image=batch_image[0,:]  image=image.numpy()#image=np.array(image)  image = image.transpose(1, 2, 0) # 通道由[c,h,w]->[h,w,c]  image_processing.cv_show_image("image",image)  print("step:{},batch_image.shape:{},batch_label:{}".format(step,batch_image.shape,batch_label))  # batch_x, batch_y = Variable(batch_x), Variable(batch_y)  if step>=max_iterate:   break # [3]第3种迭代方法 # for step in range(max_iterate): #  batch_image, batch_label=train_loader.__iter__().__next__() #  image=batch_image[0,:] #  image=image.numpy()#image=np.array(image) #  image = image.transpose(1, 2, 0) # 通道由[c,h,w]->[h,w,c] #  image_processing.cv_show_image("image",image) #  print("batch_image.shape:{},batch_label:{}".format(batch_image.shape,batch_label)) #  # batch_x, batch_y = Variable(batch_x), Variable(batch_y)

3.3 附件:image_processing.py

上面代码,用到image_processing,这是本人封装好的图像处理包,包含读取图片,画图等基本方法:

# -*-coding: utf-8 -*-""" @Project: IntelligentManufacture @File : image_processing.py @Author : panjq @E-mail : pan_jinquan@163.com @Date : 2019-02-14 15:34:50""" import osimport globimport cv2import numpy as npimport matplotlib.pyplot as plt def show_image(title, image): ''' 调用matplotlib显示RGB图片 :param title: 图像标题 :param image: 图像的数据 :return: ''' # plt.figure("show_image") # print(image.dtype) plt.imshow(image) plt.axis('on') # 关掉坐标轴为 off plt.title(title) # 图像题目 plt.show() def cv_show_image(title, image): ''' 调用OpenCV显示RGB图片 :param title: 图像标题 :param image: 输入RGB图像 :return: ''' channels=image.shape[-1] if channels==3:  image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) # 将BGR转为RGB cv2.imshow(title,image) cv2.waitKey(0) def read_image(filename, resize_height=None, resize_width=None, normalization=False): ''' 读取图片数据,默认返回的是uint8,[0,255] :param filename: :param resize_height: :param resize_width: :param normalization:是否归一化到[0.,1.0] :return: 返回的RGB图片数据 '''  bgr_image = cv2.imread(filename) # bgr_image = cv2.imread(filename,cv2.IMREAD_IGNORE_ORIENTATION|cv2.IMREAD_COLOR) if bgr_image is None:  print("Warning:不存在:{}", filename)  return None if len(bgr_image.shape) == 2: # 若是灰度图则转为三通道  print("Warning:gray image", filename)  bgr_image = cv2.cvtColor(bgr_image, cv2.COLOR_GRAY2BGR)  rgb_image = cv2.cvtColor(bgr_image, cv2.COLOR_BGR2RGB) # 将BGR转为RGB # show_image(filename,rgb_image) # rgb_image=Image.open(filename) rgb_image = resize_image(rgb_image,resize_height,resize_width) rgb_image = np.asanyarray(rgb_image) if normalization:  # 不能写成:rgb_image=rgb_image/255  rgb_image = rgb_image / 255.0 # show_image("src resize image",image) return rgb_image def fast_read_image_roi(filename, orig_rect, ImreadModes=cv2.IMREAD_COLOR, normalization=False): ''' 快速读取图片的方法 :param filename: 图片路径 :param orig_rect:原始图片的感兴趣区域rect :param ImreadModes: IMREAD_UNCHANGED      IMREAD_GRAYSCALE      IMREAD_COLOR      IMREAD_ANYDEPTH      IMREAD_ANYCOLOR      IMREAD_LOAD_GDAL      IMREAD_REDUCED_GRAYSCALE_2      IMREAD_REDUCED_COLOR_2      IMREAD_REDUCED_GRAYSCALE_4      IMREAD_REDUCED_COLOR_4      IMREAD_REDUCED_GRAYSCALE_8      IMREAD_REDUCED_COLOR_8      IMREAD_IGNORE_ORIENTATION :param normalization: 是否归一化 :return: 返回感兴趣区域ROI ''' # 当采用IMREAD_REDUCED模式时,对应rect也需要缩放 scale=1 if ImreadModes == cv2.IMREAD_REDUCED_COLOR_2 or ImreadModes == cv2.IMREAD_REDUCED_COLOR_2:  scale=1/2 elif ImreadModes == cv2.IMREAD_REDUCED_GRAYSCALE_4 or ImreadModes == cv2.IMREAD_REDUCED_COLOR_4:  scale=1/4 elif ImreadModes == cv2.IMREAD_REDUCED_GRAYSCALE_8 or ImreadModes == cv2.IMREAD_REDUCED_COLOR_8:  scale=1/8 rect = np.array(orig_rect)*scale rect = rect.astype(int).tolist() bgr_image = cv2.imread(filename,flags=ImreadModes)  if bgr_image is None:  print("Warning:不存在:{}", filename)  return None if len(bgr_image.shape) == 3: #  rgb_image = cv2.cvtColor(bgr_image, cv2.COLOR_BGR2RGB) # 将BGR转为RGB else:  rgb_image=bgr_image #若是灰度图 rgb_image = np.asanyarray(rgb_image) if normalization:  # 不能写成:rgb_image=rgb_image/255  rgb_image = rgb_image / 255.0 roi_image=get_rect_image(rgb_image , rect) # show_image_rect("src resize image",rgb_image,rect) # cv_show_image("reROI",roi_image) return roi_image def resize_image(image,resize_height, resize_width): ''' :param image: :param resize_height: :param resize_width: :return: ''' image_shape=np.shape(image) height=image_shape[0] width=image_shape[1] if (resize_height is None) and (resize_width is None):#错误写法:resize_height and resize_width is None  return image if resize_height is None:  resize_height=int(height*resize_width/width) elif resize_width is None:  resize_width=int(width*resize_height/height) image = cv2.resize(image, dsize=(resize_width, resize_height)) return imagedef scale_image(image,scale): ''' :param image: :param scale: (scale_w,scale_h) :return: ''' image = cv2.resize(image,dsize=None, fx=scale[0],fy=scale[1]) return image def get_rect_image(image,rect): ''' :param image: :param rect: [x,y,w,h] :return: ''' x, y, w, h=rect cut_img = image[y:(y+ h),x:(x+w)] return cut_imgdef scale_rect(orig_rect,orig_shape,dest_shape): ''' 对图像进行缩放时,对应的rectangle也要进行缩放 :param orig_rect: 原始图像的rect=[x,y,w,h] :param orig_shape: 原始图像的维度shape=[h,w] :param dest_shape: 缩放后图像的维度shape=[h,w] :return: 经过缩放后的rectangle ''' new_x=int(orig_rect[0]*dest_shape[1]/orig_shape[1]) new_y=int(orig_rect[1]*dest_shape[0]/orig_shape[0]) new_w=int(orig_rect[2]*dest_shape[1]/orig_shape[1]) new_h=int(orig_rect[3]*dest_shape[0]/orig_shape[0]) dest_rect=[new_x,new_y,new_w,new_h] return dest_rect def show_image_rect(win_name,image,rect): ''' :param win_name: :param image: :param rect: :return: ''' x, y, w, h=rect point1=(x,y) point2=(x+w,y+h) cv2.rectangle(image, point1, point2, (0, 0, 255), thickness=2) cv_show_image(win_name, image) def rgb_to_gray(image): image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) return image def save_image(image_path, rgb_image,toUINT8=True): if toUINT8:  rgb_image = np.asanyarray(rgb_image * 255, dtype=np.uint8) if len(rgb_image.shape) == 2: # 若是灰度图则转为三通道  bgr_image = cv2.cvtColor(rgb_image, cv2.COLOR_GRAY2BGR) else:  bgr_image = cv2.cvtColor(rgb_image, cv2.COLOR_RGB2BGR) cv2.imwrite(image_path, bgr_image) def combime_save_image(orig_image, dest_image, out_dir,name,prefix): ''' 命名标准:out_dir/name_prefix.jpg :param orig_image: :param dest_image: :param image_path: :param out_dir: :param prefix: :return: ''' dest_path = os.path.join(out_dir, name + "_"+prefix+".jpg") save_image(dest_path, dest_image)  dest_image = np.hstack((orig_image, dest_image)) save_image(os.path.join(out_dir, "{}_src_{}.jpg".format(name,prefix)), dest_image)

3.4 完整的代码

# -*-coding: utf-8 -*-""" @Project: pytorch-learning-tutorials @File : dataset.py @Author : panjq @E-mail : pan_jinquan@163.com @Date : 2019-03-07 18:45:06"""import torchfrom torch.autograd import Variablefrom torchvision import transformsfrom torch.utils.data import Dataset, DataLoaderimport numpy as npfrom utils import image_processingimport os class TorchDataset(Dataset): def __init__(self, filename, image_dir, resize_height=256, resize_width=256, repeat=1):  '''  :param filename: 数据文件TXT:格式:imge_name.jpg label1_id labe2_id  :param image_dir: 图片路径:image_dir+imge_name.jpg构成图片的完整路径  :param resize_height 为None时,不进行缩放  :param resize_width 为None时,不进行缩放,        PS:当参数resize_height或resize_width其中一个为None时,可实现等比例缩放  :param repeat: 所有样本数据重复次数,默认循环一次,当repeat为None时,表示无限循环<sys.maxsize  '''  self.image_label_list = self.read_file(filename)  self.image_dir = image_dir  self.len = len(self.image_label_list)  self.repeat = repeat  self.resize_height = resize_height  self.resize_width = resize_width   # 相关预处理的初始化  '''class torchvision.transforms.ToTensor'''  # 把shape=(H,W,C)的像素值范围为[0, 255]的PIL.Image或者numpy.ndarray数据  # 转换成shape=(C,H,W)的像素数据,并且被归一化到[0.0, 1.0]的torch.FloatTensor类型。  self.toTensor = transforms.ToTensor()   '''class torchvision.transforms.Normalize(mean, std)  此转换类作用于torch. * Tensor,给定均值(R, G, B) 和标准差(R, G, B),  用公式channel = (channel - mean) / std进行规范化。  '''  # self.normalize=transforms.Normalize()  def __getitem__(self, i):  index = i % self.len  # print("i={},index={}".format(i, index))  image_name, label = self.image_label_list[index]  image_path = os.path.join(self.image_dir, image_name)  img = self.load_data(image_path, self.resize_height, self.resize_width, normalization=False)  img = self.data_preproccess(img)  label=np.array(label)  return img, label  def __len__(self):  if self.repeat == None:   data_len = 10000000  else:   data_len = len(self.image_label_list) * self.repeat  return data_len  def read_file(self, filename):  image_label_list = []  with open(filename, 'r') as f:   lines = f.readlines()   for line in lines:    # rstrip:用来去除结尾字符、空白符(包括/n、/r、/t、' ',即:换行、回车、制表符、空格)    content = line.rstrip().split(' ')    name = content[0]    labels = []    for value in content[1:]:     labels.append(int(value))    image_label_list.append((name, labels))  return image_label_list  def load_data(self, path, resize_height, resize_width, normalization):  '''  加载数据  :param path:  :param resize_height:  :param resize_width:  :param normalization: 是否归一化  :return:  '''  image = image_processing.read_image(path, resize_height, resize_width, normalization)  return image  def data_preproccess(self, data):  '''  数据预处理  :param data:  :return:  '''  data = self.toTensor(data)  return data if __name__=='__main__': train_filename="../dataset/train.txt" # test_filename="../dataset/test.txt" image_dir='../dataset/images'  epoch_num=2 #总样本循环次数 batch_size=7 #训练时的一组数据的大小 train_data_nums=10 max_iterate=int((train_data_nums+batch_size-1)/batch_size*epoch_num) #总迭代次数  train_data = TorchDataset(filename=train_filename, image_dir=image_dir,repeat=1) # test_data = TorchDataset(filename=test_filename, image_dir=image_dir,repeat=1) train_loader = DataLoader(dataset=train_data, batch_size=batch_size, shuffle=False) # test_loader = DataLoader(dataset=test_data, batch_size=batch_size,shuffle=False)  # [1]使用epoch方法迭代,TorchDataset的参数repeat=1 for epoch in range(epoch_num):  for batch_image, batch_label in train_loader:   image=batch_image[0,:]   image=image.numpy()#image=np.array(image)   image = image.transpose(1, 2, 0) # 通道由[c,h,w]->[h,w,c]   image_processing.cv_show_image("image",image)   print("batch_image.shape:{},batch_label:{}".format(batch_image.shape,batch_label))   # batch_x, batch_y = Variable(batch_x), Variable(batch_y)  ''' 下面两种方式,TorchDataset设置repeat=None可以实现无限循环,退出循环由max_iterate设定 ''' train_data = TorchDataset(filename=train_filename, image_dir=image_dir,repeat=None) train_loader = DataLoader(dataset=train_data, batch_size=batch_size, shuffle=False) # [2]第2种迭代方法 for step, (batch_image, batch_label) in enumerate(train_loader):  image=batch_image[0,:]  image=image.numpy()#image=np.array(image)  image = image.transpose(1, 2, 0) # 通道由[c,h,w]->[h,w,c]  image_processing.cv_show_image("image",image)  print("step:{},batch_image.shape:{},batch_label:{}".format(step,batch_image.shape,batch_label))  # batch_x, batch_y = Variable(batch_x), Variable(batch_y)  if step>=max_iterate:   break # [3]第3种迭代方法 # for step in range(max_iterate): #  batch_image, batch_label=train_loader.__iter__().__next__() #  image=batch_image[0,:] #  image=image.numpy()#image=np.array(image) #  image = image.transpose(1, 2, 0) # 通道由[c,h,w]->[h,w,c] #  image_processing.cv_show_image("image",image) #  print("batch_image.shape:{},batch_label:{}".format(batch_image.shape,batch_label)) #  # batch_x, batch_y = Variable(batch_x), Variable(batch_y)

以上为个人经验,希望能给大家一个参考,也希望大家多多支持51zixue.net。如有错误或未考虑完全的地方,望不吝赐教。


解决pytorch 数据类型报错的问题
python爬取youtube视频的示例代码
万事OK自学网:51自学网_软件自学网_CAD自学网自学excel、自学PS、自学CAD、自学C语言、自学css3实例,是一个通过网络自主学习工作技能的自学平台,网友喜欢的软件自学网站。