您当前的位置:首页 > IT编程 > python
| C语言 | Java | VB | VC | python | Android | TensorFlow | C++ | oracle | 学术与代码 | cnn卷积神经网络 | gnn | 图像修复 | Keras | 数据集 | Neo4j | 自然语言处理 | 深度学习 | 医学CAD | 医学影像 | 超参数 | pointnet | pytorch | 异常检测 | Transformers | 情感分类 | 知识图谱 |

自学教程:解决tensorflow模型压缩的问题_踩坑无数,总算搞定

51自学网 2021-10-30 22:53:45
  python
这篇教程解决tensorflow模型压缩的问题_踩坑无数,总算搞定写得很实用,希望能帮到您。

1.安装bazel,从github上下载linux版的.sh文件,然后安装

2.从GitHub上下载最新的TensorFlow源码

3.进入TensorFlow源码文件夹,输入命令

bazel build tensorflow/tools/graph_transforms:transform_graph

这里会遇到各种坑,比如

ERROR: /opt/tf/tensorflow-master/tensorflow/core/kernels/BUILD:3044:1: C++ compilation of rule ‘//tensorflow/core/kernels:matrix_square_root_op' failed (Exit 4)

gcc: internal compiler error: Killed (program cc1plus)

这个错误是cpu负荷太大,需要加行代码

# 生成swap镜像文件sudo dd if=/dev/zero of=/mnt/512Mb.swap bs=1M count=512# 对该镜像文件格式化sudo mkswap /mnt/512Mb.swap# 挂载该镜像文件 sudo swapon /mnt/512Mb.swap

又或者这个@aws Error downloading

我看csdn有的博主解决方法是去临时文件夹删掉文件重新下载,但是我这边发现没用,我这边的解决方法是运行bazel前先输入一条命令:

sed -i '/@https://github.com/aws/aws-sdk-cpp/archive/1.5.8.tar.gz@aws' tensorflow/workspace.bzl

命令里的网址就是实际要下载的文件的地址,因为有的地址可能改了

到这里编译bazel就完成了

4.编译完了就可以模型压缩了,也是一行代码,in_graph为输入模型路径,outputs不动,out_graph为输出模型路径,transforms就填一个quantize_weights就可以了,这个就是把32bit转成8bit的,也是此方法最有效的一步;我看有的博主还先编译summary然后打印出输入输出结点,之后再输入一大堆参数,还删除一些结点啥的,我这边都试了,最终也并没有更缩减模型大小,所以就这样就可以了。

bazel-bin/tensorflow/tools/graph_transforms/transform_graph --in_graph=../model/ctpn.pb  --outputs='output_node_name'  --out_graph=../model/quantized_ctpn.pb  --transforms='quantize_weights'

最终从68m缩减到17m,75%的缩减比例,实测效果基本没啥差别,这方法还是很管用的。

补充:模型压缩一二三之tensorflow查看ckpt模型里的参数和数值

查看ckpt模型参数和数值

import osfrom tensorflow.python import pywrap_tensorflowcheckpoint_path = os.path.join("<你的模型的目录>", "./model.ckpt-11000") # Read data from checkpoint filereader = pywrap_tensorflow.NewCheckpointReader(checkpoint_path)var_to_shape_map = reader.get_variable_to_shape_map()# Print tensor name and valuesfor key in var_to_shape_map: print("tensor_name: ", key) print(reader.get_tensor(key))

注意:

1、"<你的模型目录>“是指你的meta、ckpt这些模型存储的路径。

比如路径”/models/model.ckpt-11000.meta"这种,那么"<你的模型目录>“就是”/models"

2、当目录下有多个ckpt时,取最新的model名字到ckpt-<最大数字>就可以了,后面不用了。

以上为个人经验,希望能给大家一个参考,也希望大家多多支持51zixue.net。如有错误或未考虑完全的地方,望不吝赐教。


python Protobuf定义消息类型知识点讲解
numpy实现RNN原理实现
万事OK自学网:51自学网_软件自学网_CAD自学网自学excel、自学PS、自学CAD、自学C语言、自学css3实例,是一个通过网络自主学习工作技能的自学平台,网友喜欢的软件自学网站。