这篇教程Pandas数据分析的一些常用小技巧写得很实用,希望能帮到您。
Pandas小技巧
pandas生成数据
d = {"sex": ["male", "female", "male", "female"], "color": ["red", "green", "blue", "yellow"], "age": [12, 56, 21, 31]}df = pd.DataFrame(d)df | sex | color | age | 0 | male | red | 12 | 1 | female | green | 56 | 2 | male | blue | 21 | 3 | female | yellow | 31 |
数据替换–map映射
map() 会根据提供的函数对指定序列做映射。 map(function, iterable, …) - function – 函数
- iterable – 一个或多个序列
d = {"male": 1, "female": 0}df["gender"] = df["sex"].map(d)df | sex | color | age | gender | 0 | male | red | 12 | 1 | 1 | female | green | 56 | 0 | 2 | male | blue | 21 | 1 | 3 | female | yellow | 31 | 0 |
数据清洗–replace和正则
分享pandas数据清洗技巧,在某列山使用replace和正则快速完成值的清洗 d = {"customer": ["A", "B", "C", "D"], "sales": [1000, "950.5RMB", "$400", "$1250.75"]}df = pd.DataFrame(d)df | customer | sales | 0 | A | 1000 | 1 | B | 950.5RMB | 2 | C | $400 | 3 | D | $1250.75 | sales列的数据类型不同意,为后续分析,所以需要将他的格式同统一 df["sales"] = df["sales"].replace("[$,RMB]", "", regex=True).astype("float") | customer | sales | 0 | A | 1000.00 | 1 | B | 950.50 | 2 | C | 400.00 | 3 | D | 1250.75 | 查看数据类型 0 <class 'float'> 1 <class 'float'> 2 <class 'float'> 3 <class 'float'> Name: sales, dtype: object
数据透视表分析–melt函数
melt是逆转操作函数,可以将列名转换为列数据(columns name → column values),重构DataFrame,用法如下: 参数说明: pandas.melt(frame, id_vars=None, value_vars=None, var_name=None, value_name=‘value', col_level=None)
- frame:要处理的数据集。
- id_vars:不需要被转换的列名。
- value_vars:需要转换的列名,如果剩下的列全部都要转换,就不用写了。
- var_name和value_name是自定义设置对应的列名。
- col_level :如果列是MultiIndex,则使用此级别。
二维表格转成一维表格 d = {"district_code": [12345, 56789, 101112, 131415], "apple": [5.2, 2.4, 4.2, 3.6], "banana": [3.5, 1.9, 4.0, 2.3], "orange": [8.0, 7.5, 6.4, 3.9] }df = pd.DataFrame(d)df | district_code | apple | banana | orange | 0 | 12345 | 5.2 | 3.5 | 8.0 | 1 | 56789 | 2.4 | 1.9 | 7.5 | 2 | 101112 | 4.2 | 4.0 | 6.4 | 3 | 131415 | 3.6 | 2.3 | 3.9 | df = df.melt(id_vars="district_code", var_name="fruit_name", value_name="price")df | district_code | fruit_name | price | 0 | 12345 | apple | 5.2 | 1 | 56789 | apple | 2.4 | 2 | 101112 | apple | 4.2 | 3 | 131415 | apple | 3.6 | 4 | 12345 | banana | 3.5 | 5 | 56789 | banana | 1.9 | 6 | 101112 | banana | 4.0 | 7 | 131415 | banana | 2.3 | 8 | 12345 | orange | 8.0 | 9 | 56789 | orange | 7.5 | 10 | 101112 | orange | 6.4 | 11 | 131415 | orange | 3.9 |
将分类中出现次数较少的值归为others
d = {"name": ['Jone', 'Alica', 'Emily', 'Robert', 'Tomas', 'Zhang', 'Liu', 'Wang', 'Jack', 'Wsx', 'Guo'], "categories": ["A", "C", "A", "D", "A", "B", "B", "C", "A", "E", "F"]}df = pd.DataFrame(d)df | name | categories | 0 | Jone | A | 1 | Alica | C | 2 | Emily | A | 3 | Robert | D | 4 | Tomas | A | 5 | Zhang | B | 6 | Liu | B | 7 | Wang | C | 8 | Jack | A | 9 | Wsx | E | 10 | Guo | F | D、E、F 仅在分类中出现一次,A 出现次数较多。 统计出现次数,并标准化 frequencies = df["categories"].value_counts(normalize=True)frequencies A 0.363636 B 0.181818 C 0.181818 E 0.090909 D 0.090909 F 0.090909 Name: categories, dtype: float64
设定阈值 threshold = 0.1small_categories = frequencies[frequencies < threshold].indexsmall_categories Index(['E', 'D', 'F'], dtype='object') 替换 df["categories"] = df["categories"].replace(small_categories, "Others") | name | categories | 0 | Jone | A | 1 | Alica | C | 2 | Emily | A | 3 | Robert | Others | 4 | Tomas | A | 5 | Zhang | B | 6 | Liu | B | 7 | Wang | C | 8 | Jack | A | 9 | Wsx | Others | 10 | Guo | Others |
Python小技巧
列表推导式
例如,假设我们想创建一个正方形列表,例如 squares = []for x in range(10): squares.append(x**2)squares [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
squares = list(map(lambda x: x**2, range(10)))squares [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
squares = [x**2 for x in range(10)]squares [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
同时还可以利用if来过滤列表 [(x, y) for x in [1,2,3] for y in [3,1,4] if x != y] [(1, 3), (1, 4), (2, 3), (2, 1), (2, 4), (3, 1), (3, 4)]
列表推导式可以包含复杂表达式和嵌套函数 from math import pi[str(round(pi, i)) for i in range(1, 6)] ['3.1', '3.14', '3.142', '3.1416', '3.14159']
列表推导式中的初始表达式可以是任意表达式,包括另一个列表推导式。 下面的列表推导式将对行和列进行转置 matrix = [ [1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12],] [[row[i] for row in matrix] for i in range(4)] [[1, 5, 9], [2, 6, 10], [3, 7, 11], [4, 8, 12]]
交换变量
a = 1b = 2a, b = b, aprint("a = ",a)print("b = ",b) a = 2 b = 1
检查对象使用内存情况
sys.getsizeof() range()函数返回的是一个类,在使用内存方面,range远比实际的数字列表更加高效 import sysmylist = range(1,10000)print(sys.getsizeof(mylist)) 48
合并字典
从Python3.5开始,合并字典的操作更加简单 如果key重复,那么第一个字典的key会被覆盖 d1 ={"a":1,"b":2}d2 = {"b":2,"c":4}m = {**d1,**d2}print(m) {'a': 1, 'b': 2, 'c': 4}
字符串分割成列表
string = "the author is beishanla"s = string.split(" ")s ['the', 'author', 'is', 'beishanla']
字符串列表创建字符串
l = ["the","author","is","beishanla"]l = " ".join(l)l 'the author is beishanla'
Python查看图片
from PIL import Imageim = Image.open("E:/Python/00网络爬虫/Project/词云图跳舞视频/aip-python-sdk-4.15.1/pictures/img_88.jpg")im.show() print(im.format,im.size,im.mode) JPEG (1920, 1080) RGB
欢迎搜藏,持续更新
总结到此这篇关于Pandas数据分析的一些常用小技巧的文章就介绍到这了,更多相关Pandas数据分析技巧内容请搜索51zixue.net以前的文章或继续浏览下面的相关文章希望大家以后多多支持51zixue.net! 使用python tkinter开发一个爬取B站直播弹幕工具的实现代码 使用Python制作一个数据预处理小工具(多种操作一键完成) |