这篇教程python中threading和queue库实现多线程编程写得很实用,希望能帮到您。 摘要
本文主要介绍了利用python的 threading和queue库实现多线程编程,并封装为一个类,方便读者嵌入自己的业务逻辑。最后以机器学习的一个超参数选择为例进行演示。 多线程实现逻辑封装
实例化该类后,在.object_func函数中加入自己的业务逻辑,再调用.run方法即可。 # -*- coding: utf-8 -*-# @Time : 2021/2/4 14:36# @Author : CyrusMay WJ# @FileName: run.py# @Software: PyCharm# @Blog :https://blog.csdn.net/Cyrus_Mayimport queueimport threadingclass CyrusThread(object): def __init__(self,num_thread = 10,logger=None): """ :param num_thread: 线程数 :param logger: 日志对象 """ self.num_thread = num_thread self.logger = logger def object_func(self,args_queue,max_q): while 1: try: arg = args_queue.get_nowait() step = args_queue.qsize() self.logger.info("progress:{}/{}".format(max_q,step)) except: self.logger.info("no more arg for args_queue!") break """ 此处加入自己的业务逻辑代码 """ def run(self,args): args_queue = queue.Queue() for value in args: args_queue.put(value) threads = [] for i in range(self.num_thread): threads.append(threading.Thread(target=self.object_func,args = args_queue)) for t in threads: t.start() for t in threads: t.join() 模型参数选择实例
# -*- coding: utf-8 -*-# @Time : 2021/2/4 14:36# @Author : CyrusMay WJ# @FileName: run.py# @Software: PyCharm# @Blog :https://blog.csdn.net/Cyrus_Mayimport queueimport threadingimport numpy as npfrom sklearn.datasets import load_bostonfrom sklearn.svm import SVRimport loggingimport sysclass CyrusThread(object): def __init__(self,num_thread = 10,logger=None): """ :param num_thread: 线程数 :param logger: 日志对象 """ self.num_thread = num_thread self.logger = logger def object_func(self,args_queue,max_q): while 1: try: arg = args_queue.get_nowait() step = args_queue.qsize() self.logger.info("progress:{}/{}".format(max_q,max_q-step)) except: self.logger.info("no more arg for args_queue!") break # 业务代码 C, epsilon, gamma = arg[0], arg[1], arg[2] svr_model = SVR(C=C, epsilon=epsilon, gamma=gamma) x, y = load_boston()["data"], load_boston()["target"] svr_model.fit(x, y) self.logger.info("score:{}".format(svr_model.score(x,y))) def run(self,args): args_queue = queue.Queue() max_q = 0 for value in args: args_queue.put(value) max_q += 1 threads = [] for i in range(self.num_thread): threads.append(threading.Thread(target=self.object_func,args = (args_queue,max_q))) for t in threads: t.start() for t in threads: t.join()# 创建日志对象logger = logging.getLogger()logger.setLevel(logging.INFO)screen_handler = logging.StreamHandler(sys.stdout)screen_handler.setLevel(logging.INFO)formatter = logging.Formatter('%(asctime)s - %(module)s.%(funcName)s:%(lineno)d - %(levelname)s - %(message)s')screen_handler.setFormatter(formatter)logger.addHandler(screen_handler)# 创建需要调整参数的集合args = []for C in [i for i in np.arange(0.01,1,0.01)]: for epsilon in [i for i in np.arange(0.001,1,0.01)] + [i for i in range(1,10,1)]: for gamma in [i for i in np.arange(0.001,1,0.01)] + [i for i in range(1,10,1)]: args.append([C,epsilon,gamma])# 创建多线程工具threading_tool = CyrusThread(num_thread=20,logger=logger)threading_tool.run(args) 运行结果 2021-02-04 20:52:22,824 - run.object_func:31 - INFO - progress:1176219/1 2021-02-04 20:52:22,824 - run.object_func:31 - INFO - progress:1176219/2 2021-02-04 20:52:22,826 - run.object_func:31 - INFO - progress:1176219/3 2021-02-04 20:52:22,833 - run.object_func:31 - INFO - progress:1176219/4 2021-02-04 20:52:22,837 - run.object_func:31 - INFO - progress:1176219/5 2021-02-04 20:52:22,838 - run.object_func:31 - INFO - progress:1176219/6 2021-02-04 20:52:22,841 - run.object_func:31 - INFO - progress:1176219/7 2021-02-04 20:52:22,862 - run.object_func:31 - INFO - progress:1176219/8 2021-02-04 20:52:22,873 - run.object_func:31 - INFO - progress:1176219/9 2021-02-04 20:52:22,884 - run.object_func:31 - INFO - progress:1176219/10 2021-02-04 20:52:22,885 - run.object_func:31 - INFO - progress:1176219/11 2021-02-04 20:52:22,897 - run.object_func:31 - INFO - progress:1176219/12 2021-02-04 20:52:22,900 - run.object_func:31 - INFO - progress:1176219/13 2021-02-04 20:52:22,904 - run.object_func:31 - INFO - progress:1176219/14 2021-02-04 20:52:22,912 - run.object_func:31 - INFO - progress:1176219/15 2021-02-04 20:52:22,920 - run.object_func:31 - INFO - progress:1176219/16 2021-02-04 20:52:22,920 - run.object_func:39 - INFO - score:-0.01674283914287855 2021-02-04 20:52:22,929 - run.object_func:31 - INFO - progress:1176219/17 2021-02-04 20:52:22,932 - run.object_func:39 - INFO - score:-0.007992354170952565 2021-02-04 20:52:22,932 - run.object_func:31 - INFO - progress:1176219/18 2021-02-04 20:52:22,945 - run.object_func:31 - INFO - progress:1176219/19 2021-02-04 20:52:22,954 - run.object_func:31 - INFO - progress:1176219/20 2021-02-04 20:52:22,978 - run.object_func:31 - INFO - progress:1176219/21 2021-02-04 20:52:22,984 - run.object_func:39 - INFO - score:-0.018769934807246536 2021-02-04 20:52:22,985 - run.object_func:31 - INFO - progress:1176219/22
到此这篇关于python中threading和queue库实现多线程编程的文章就介绍到这了,更多相关python 多线程编程内容请搜索51zixue.net以前的文章或继续浏览下面的相关文章希望大家以后多多支持51zixue.net! Python3爬虫ChromeDriver的安装实例 Python第三方库安装缓慢的解决方法 |