您当前的位置:首页 > IT编程 > python
| C语言 | Java | VB | VC | python | Android | TensorFlow | C++ | oracle | 学术与代码 | cnn卷积神经网络 | gnn | 图像修复 | Keras | 数据集 | Neo4j | 自然语言处理 | 深度学习 | 医学CAD | 医学影像 | 超参数 | pointnet | pytorch | 异常检测 | Transformers | 情感分类 | 知识图谱 |

自学教程:python验证多组数据之间有无显著差异

51自学网 2022-02-21 10:36:51
  python
这篇教程python验证多组数据之间有无显著差异写得很实用,希望能帮到您。

一、方差分析

1.单因素方差分析

通过箱线图可以人肉看出10组的订单量看起来差不多,为了更科学比较10组的订单量有无显著差异,我们可以利用方差分析

from statsmodels.formula.api import olsfrom statsmodels.stats.anova import anova_lmmodel = ols('orders~C(label)',data=need_data).fit()anova_table = anova_lm(model, typ = 2)print(anova_table)

结果显示,p值为0.62大于0.05,不能拒绝原假设,所以这10组的订单量分布没有显著差异。

二、卡方检验

如果是比较多组之间的非连续值指标是否存在差异呢?

如检查上面10组的男女比例是否存在显著差异

计算各组观察频数:

data2=data1.melt(id_vars=['性别'],value_name='观察频数')data2.head()

计算总体的男女比例:

rate=(data2.groupby(['性别'])['观察频数'].sum()/data2.groupby(['性别'])['观察频数'].sum().sum()).reset_index()rate.columns=['性别','rate']rate

计算各组用户总数:

group_sum=data2.groupby(['组别'])['观察频数'].sum().reset_index()group_sum.columns=['组别','组内用户数']group_sum

计算卡方值:

import mathdata3=pd.merge(data2,group_sum,on=['组别'],how='left')data3=pd.merge(data3,rate,on=['性别'],how='left')data3['期望频数']=data3['组内用户数']*data3['rate']data3['卡方值']=data3.apply(lambda x: math.pow((x.期望频数-x.观察频数),2)/x.期望频数,axis=1)data3.head()

本案例的自由度为(10-1)*(2-1)=9,选取显著性水平为0.05,查卡方分布表得临界值为18.31
因为7.01<18.31,所以不能拒绝原假设,即各组的性别分布不存在显著性差异。

到此这篇关于python验证多组数据之间有无显著差异的文章就介绍到这了,更多相关python验证多组数据之间有无显著差异内容请搜索51zixue.net以前的文章或继续浏览下面的相关文章希望大家以后多多支持51zixue.net!


Python爬虫爬取网站图片
Python爬取当网书籍数据并数据可视化展示
万事OK自学网:51自学网_软件自学网_CAD自学网自学excel、自学PS、自学CAD、自学C语言、自学css3实例,是一个通过网络自主学习工作技能的自学平台,网友喜欢的软件自学网站。