您当前的位置:首页 > IT编程 > python
| C语言 | Java | VB | VC | python | Android | TensorFlow | C++ | oracle | 学术与代码 | cnn卷积神经网络 | gnn | 图像修复 | Keras | 数据集 | Neo4j | 自然语言处理 | 深度学习 | 医学CAD | 医学影像 | 超参数 | pointnet | pytorch | 异常检测 | Transformers | 情感分类 | 知识图谱 |

自学教程:Python实现特定场景去除高光算法详解

51自学网 2022-02-21 10:37:01
  python
这篇教程Python实现特定场景去除高光算法详解写得很实用,希望能帮到您。

算法思路

1、求取源图I的平均灰度,并记录rows和cols;

2、按照一定大小,分为N*M个方块,求出每块的平均值,得到子块的亮度矩阵D;

3、用矩阵D的每个元素减去源图的平均灰度,得到子块的亮度差值矩阵E;

4、通过插值算法,将矩阵E差值成与源图一样大小的亮度分布矩阵R;

5、得到矫正后的图像result=I-R;

应用场景

光照不均匀的整体色泽一样的物体,比如工业零件,ocr场景。

代码实现

import cv2import numpy as np def unevenLightCompensate(gray, blockSize):    #gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)    average = np.mean(gray)    rows_new = int(np.ceil(gray.shape[0] / blockSize))    cols_new = int(np.ceil(gray.shape[1] / blockSize))    blockImage = np.zeros((rows_new, cols_new), dtype=np.float32)    for r in range(rows_new):        for c in range(cols_new):            rowmin = r * blockSize            rowmax = (r + 1) * blockSize            if (rowmax > gray.shape[0]):                rowmax = gray.shape[0]            colmin = c * blockSize            colmax = (c + 1) * blockSize            if (colmax > gray.shape[1]):                colmax = gray.shape[1]            imageROI = gray[rowmin:rowmax, colmin:colmax]            temaver = np.mean(imageROI)             blockImage[r, c] = temaver          blockImage = blockImage - average    blockImage2 = cv2.resize(blockImage, (gray.shape[1], gray.shape[0]), interpolation=cv2.INTER_CUBIC)    gray2 = gray.astype(np.float32)    dst = gray2 - blockImage2    dst[dst>255]=255    dst[dst<0]=0    dst = dst.astype(np.uint8)    dst = cv2.GaussianBlur(dst, (3, 3), 0)    #dst = cv2.cvtColor(dst, cv2.COLOR_GRAY2BGR)    return dst if __name__ == '__main__':    file = 'www.png'    blockSize = 8    img = cv2.imread(file)    b,g,r = cv2.split(img)    dstb = unevenLightCompensate(b, blockSize)    dstg = unevenLightCompensate(g, blockSize)    dstr = unevenLightCompensate(r, blockSize)    dst = cv2.merge([dstb, dstg, dstr])    result = np.concatenate([img, dst], axis=1)cv2.imwrite('result.jpg', result)

实验效果

补充

OpenCV实现光照去除效果

1.方法一(RGB归一化)

int main(int argc, char *argv[]){	//double temp = 255 / log(256);	//cout << "doubledouble temp ="<< temp<<endl;		Mat  image = imread("D://vvoo//sun_face.jpg", 1);	if (!image.data)	{		cout << "image loading error" <<endl;		return -1;	}	imshow("原图", image);	Mat src(image.size(), CV_32FC3);	for (int i = 0; i < image.rows; i++)	{		for (int j = 0; j < image.cols; j++)		{			src.at<Vec3f>(i, j)[0] = 255 * (float)image.at<Vec3b>(i, j)[0] / ((float)image.at<Vec3b>(i, j)[0] + (float)image.at<Vec3b>(i, j)[2] + (float)image.at<Vec3b>(i, j)[1]+0.01);			src.at<Vec3f>(i, j)[1] = 255 * (float)image.at<Vec3b>(i, j)[1] / ((float)image.at<Vec3b>(i, j)[0] + (float)image.at<Vec3b>(i, j)[2] + (float)image.at<Vec3b>(i, j)[1]+0.01);			src.at<Vec3f>(i, j)[2] = 255 * (float)image.at<Vec3b>(i, j)[2] / ((float)image.at<Vec3b>(i, j)[0] + (float)image.at<Vec3b>(i, j)[2] + (float)image.at<Vec3b>(i, j)[1]+0.01);		}	}		normalize(src, src, 0, 255, CV_MINMAX);      	convertScaleAbs(src,src);	imshow("rgb", src);	imwrite("C://Users//TOPSUN//Desktop//123.jpg", src);	waitKey(0);	return 0;}

实现效果

2.方法二

void unevenLightCompensate(Mat &image, int blockSize){	if (image.channels() == 3) cvtColor(image, image, 7);	double average = mean(image)[0];	int rows_new = ceil(double(image.rows) / double(blockSize));	int cols_new = ceil(double(image.cols) / double(blockSize));	Mat blockImage;	blockImage = Mat::zeros(rows_new, cols_new, CV_32FC1);	for (int i = 0; i < rows_new; i++)	{		for (int j = 0; j < cols_new; j++)		{			int rowmin = i*blockSize;			int rowmax = (i + 1)*blockSize;			if (rowmax > image.rows) rowmax = image.rows;			int colmin = j*blockSize;			int colmax = (j + 1)*blockSize;			if (colmax > image.cols) colmax = image.cols;			Mat imageROI = image(Range(rowmin, rowmax), Range(colmin, colmax));			double temaver = mean(imageROI)[0];			blockImage.at<float>(i, j) = temaver;		}	}	blockImage = blockImage - average;	Mat blockImage2;	resize(blockImage, blockImage2, image.size(), (0, 0), (0, 0), INTER_CUBIC);	Mat image2;	image.convertTo(image2, CV_32FC1);	Mat dst = image2 - blockImage2;	dst.convertTo(image, CV_8UC1);}int main(int argc, char *argv[]){	//double temp = 255 / log(256);	//cout << "doubledouble temp ="<< temp<<endl;		Mat  image = imread("C://Users//TOPSUN//Desktop//2.jpg", 1);	if (!image.data)	{		cout << "image loading error" <<endl;		return -1;	}	imshow("原图", image);	unevenLightCompensate(image, 12);	imshow("rgb", image);	imwrite("C://Users//TOPSUN//Desktop//123.jpg", image);	waitKey(0);	return 0;}

实现效果

到此这篇关于Python实现特定场景去除高光算法详解的文章就介绍到这了,更多相关Python去除高光算法内容请搜索51zixue.net以前的文章或继续浏览下面的相关文章希望大家以后多多支持51zixue.net!


Python中10个常用的内置函数详解
python&nbsp;中使用yagmail&nbsp;发送邮件功能
万事OK自学网:51自学网_软件自学网_CAD自学网自学excel、自学PS、自学CAD、自学C语言、自学css3实例,是一个通过网络自主学习工作技能的自学平台,网友喜欢的软件自学网站。