您当前的位置:首页 > IT编程 > python
| C语言 | Java | VB | VC | python | Android | TensorFlow | C++ | oracle | 学术与代码 | cnn卷积神经网络 | gnn | 图像修复 | Keras | 数据集 | Neo4j | 自然语言处理 | 深度学习 | 医学CAD | 医学影像 | 超参数 | pointnet | pytorch | 异常检测 | Transformers | 情感分类 | 知识图谱 |

自学教程:Python实现DBSCAN聚类算法并样例测试

51自学网 2021-10-30 22:27:13
  python
这篇教程Python实现DBSCAN聚类算法并样例测试写得很实用,希望能帮到您。

什么是聚类算法

聚类是一种机器学习技术,它涉及到数据点的分组。给定一组数据点,我们可以使用聚类算法将每个数据点划分为一个特定的组。理论上,同一组中的数据点应该具有相似的属性和/或特征,而不同组中的数据点应该具有高度不同的属性和/或特征。聚类是一种无监督学习的方法,是许多领域中常用的统计数据分析技术。

常用的算法包括K-MEANS、高斯混合模型(Gaussian Mixed Model,GMM)、自组织映射神经网络(Self-Organizing Map,SOM)

重点给大家介绍Python实现DBSCAN聚类算法并通过简单样例测试。

发现高密度的核心样品并从中膨胀团簇。

Python代码如下:

# -*- coding: utf-8 -*-"""Demo of DBSCAN clustering algorithmFinds core samples of high density and expands clusters from them."""print(__doc__)# 引入相关包import numpy as npfrom sklearn.cluster import DBSCANfrom sklearn import metricsfrom sklearn.datasets.samples_generator import make_blobsfrom sklearn.preprocessing import StandardScalerimport matplotlib.pyplot as plt# 初始化样本数据centers = [[1, 1], [-1, -1], [1, -1]]X, labels_true = make_blobs(n_samples=750, centers=centers, cluster_std=0.4,                            random_state=0)X = StandardScaler().fit_transform(X)# 计算DBSCANdb = DBSCAN(eps=0.3, min_samples=10).fit(X)core_samples_mask = np.zeros_like(db.labels_, dtype=bool)core_samples_mask[db.core_sample_indices_] = Truelabels = db.labels_# 聚类的结果n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)n_noise_ = list(labels).count(-1)print('Estimated number of clusters: %d' % n_clusters_)print('Estimated number of noise points: %d' % n_noise_)print("Homogeneity: %0.3f" % metrics.homogeneity_score(labels_true, labels))print("Completeness: %0.3f" % metrics.completeness_score(labels_true, labels))print("V-measure: %0.3f" % metrics.v_measure_score(labels_true, labels))print("Adjusted Rand Index: %0.3f"      % metrics.adjusted_rand_score(labels_true, labels))print("Adjusted Mutual Information: %0.3f"      % metrics.adjusted_mutual_info_score(labels_true, labels,                                           average_method='arithmetic'))print("Silhouette Coefficient: %0.3f"      % metrics.silhouette_score(X, labels))# 绘出结果unique_labels = set(labels)colors = [plt.cm.Spectral(each)          for each in np.linspace(0, 1, len(unique_labels))]for k, col in zip(unique_labels, colors):    if k == -1:        col = [0, 0, 0, 1]    class_member_mask = (labels == k)    xy = X[class_member_mask & core_samples_mask]    plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=tuple(col),             markeredgecolor='k', markersize=14)    xy = X[class_member_mask & ~core_samples_mask]    plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=tuple(col),             markeredgecolor='k', markersize=6)plt.title('Estimated number of clusters: %d' % n_clusters_)plt.show()

测试结果如下:

最终结果绘图:

具体数据:

以上就是Python实现DBSCAN聚类算法(简单样例测试)的详细内容,更多关于Python聚类算法的资料请关注51zixue.net其它相关文章!


python中sqllite插入numpy数组到数据库的实现方法
Python 中的单分派泛函数你真的了解吗
万事OK自学网:51自学网_软件自学网_CAD自学网自学excel、自学PS、自学CAD、自学C语言、自学css3实例,是一个通过网络自主学习工作技能的自学平台,网友喜欢的软件自学网站。