您当前的位置:首页 > IT编程 > python
| C语言 | Java | VB | VC | python | Android | TensorFlow | C++ | oracle | 学术与代码 | cnn卷积神经网络 | gnn | 图像修复 | Keras | 数据集 | Neo4j | 自然语言处理 | 深度学习 | 医学CAD | 医学影像 | 超参数 | pointnet | pytorch | 异常检测 | Transformers | 情感分类 | 知识图谱 |

自学教程:关于Matplotlib绘制动态实时曲线的方法改进指南

51自学网 2021-10-30 22:29:54
  python
这篇教程关于Matplotlib绘制动态实时曲线的方法改进指南写得很实用,希望能帮到您。

很多时候,我们需要实时的绘制曲线,如实时的绘制串口接收到的数据。最先想到的解决策略是类似于Matlab种的drawnow函数。

在python中Matplotlib库有着和Matlan绘图库相似的功能,但是并没有drawnow这样的函数。

已有的解决方案

通过网上现有的资料 基于Python实现matplotlib中动态更新图片(交互式绘图) ,可以通过打开Matplotlib的交互模式来实现实时绘图的目的,此时需要用到函数matplotlib.pyplot.ion

存在的问题

通过上述方法实时绘图,存在一个严重的问题:随着时间推移,CPU消耗越大,费时越多,最终导致程序卡顿。这显然无法满足我们实时绘图的要求。

以下通过time模块计算每一步的耗时,直观地表现这一现象。

def Method(point):   es_time = np.zeros([point])    fig=plt.figure()   ax=fig.add_subplot(1,1,1)   ax.axis("equal") #设置图像显示的时候XY轴比例   ax.set_xlabel('Horizontal Position')   ax.set_ylabel('Vertical Position')   ax.set_title('Vessel trajectory')   plt.grid(True) #添加网格   plt.ion()  #interactive mode on   IniObsX=0000   IniObsY=4000   IniObsAngle=135   IniObsSpeed=10*math.sqrt(2)   #米/秒   print('开始仿真')   for t in range(point):       t0 = time.time()       #障碍物船只轨迹       obsX=IniObsX+IniObsSpeed*math.sin(IniObsAngle/180*math.pi)*t       obsY=IniObsY+IniObsSpeed*math.cos(IniObsAngle/180*math.pi)*t       ax.scatter(obsX,obsY,c='b',marker='.')  #散点图       #下面的图,两船的距离       plt.pause(0.001)       es_time[t] = 1000*(time.time() - t0)   return es_time

耗时结果


Method

很显然每步绘图时间与绘图点数呈线性相关的趋势,且随着点数增加,时间消耗越多。可以想象,当绘图的点数到达上万乃至亿的时候,那电脑就卡住了。

分析原因

个人猜测出现上述这种现象的原因,是由代码ax.scatter(obsX,obsY,c='b',marker='.')造成的。这段代码每一循环一次就新画一条曲线,而不清除之前的曲线,这就必然导致越往后循环所花费的CPU资源内存资源越多,最终机器卡死。

改进方法

既然原因是因为不断重复画图所致,导致机器资源的累积消耗,所以想到的第一个解决方法,那就是每次画图前,清除之前的曲线。

根据上述思想,在每一次的画图代码ax.scatter(obsX,obsY,c='b',marker='.')前加上清除代码plt.cla()。即:

        plt.cla()        ax.plot(obsX,obsY,'-g',marker='*')  #散点图

可是这样做之后就会存在新的问题:之前定义的坐标轴,标题,图例等等信息就都被清除了。解决方法则,需要在每一步的循环中,重新定义这些信息。

完整代码

def Method_Improve(point):    def initial(ax):        ax.axis("equal") #设置图像显示的时候XY轴比例        ax.set_xlabel('Horizontal Position')        ax.set_ylabel('Vertical Position')        ax.set_title('Vessel trajectory')        plt.grid(True) #添加网格        return ax        es_time = np.zeros([point])     fig=plt.figure()    ax=fig.add_subplot(1,1,1)    ax = initial(ax)    plt.ion()  #interactive mode on    IniObsX=0000    IniObsY=4000    IniObsAngle=135    IniObsSpeed=10*math.sqrt(2)   #米/秒    print('开始仿真')    obsX = [0,]    obsY = [4000,]    for t in range(point):        t0 = time.time()        #障碍物船只轨迹        obsX.append(IniObsX+IniObsSpeed*math.sin(IniObsAngle/180*math.pi)*t)        obsY.append(IniObsY+IniObsSpeed*math.cos(IniObsAngle/180*math.pi)*t)        plt.cla()        ax = initial(ax)        ax.plot(obsX,obsY,'-g',marker='*')  #散点图        #下面的图,两船的距离        plt.pause(0.001)        es_time[t] = 1000*(time.time() - t0)    return es_time

耗时结果


Method_Improve

显然循环次数与耗时不再呈正相关趋势,可以说是在一定误差范围内,耗时保持稳定。

改进方法的改进

改进方法中仍存在一个问题:由于每次循环都需要清除坐标轴信息,那么每次循环也必须再重新设置坐标轴信息。显然这种做法,导致了额外的算力消耗,那能否有新的方法,规避这种问题呢?答案显然是有的。

但是解决思路还是得从原始问题出发,即重复画图,导致资源的累积消耗。所以令一种新的思路:只画一条(需要数量的)曲线,每次循环更改这些曲线的数据。

那么按照上述思路之后,只需程序开头定义好坐标轴信息,而不需要每次循环内清除重设坐标轴信息。

具体做法,就是获取曲线的句柄,进行修改,即有:

        line.set_xdata(obsX)        line.set_ydata(obsY)

完整代码:

def ImprovedMethod_Improve(point):        es_time = np.zeros([point])     fig=plt.figure()    ax=fig.add_subplot(1,1,1)    ax.set_xlabel('Horizontal Position')    ax.set_ylabel('Vertical Position')    ax.set_title('Vessel trajectory')        line = ax.plot([0,0],[4000,4000],'-g',marker='*')[0]    plt.grid(True) #添加网格    plt.ion()  #interactive mode on    IniObsX=0000    IniObsY=4000    IniObsAngle=135    IniObsSpeed=10*math.sqrt(2)   #米/秒    print('开始仿真')    obsX = [0,]    obsY = [4000,]    for t in range(point):        t0 = time.time()        #障碍物船只轨迹        obsX.append(IniObsX+IniObsSpeed*math.sin(IniObsAngle/180*math.pi)*t)        obsY.append(IniObsY+IniObsSpeed*math.cos(IniObsAngle/180*math.pi)*t)                line.set_xdata(obsX)        line.set_ydata(obsY)        ax.set_xlim([-200,10*point+200])        ax.set_ylim([3800-10*point,4200])        #下面的图,两船的距离        plt.pause(0.001)        es_time[t] = 1000*(time.time() - t0)    return es_time


三种方法对比

总结

到此这篇关于Matplotlib绘制动态实时曲线的文章就介绍到这了,更多相关Matplotlib绘制动态实时曲线内容请搜索51zixue.net以前的文章或继续浏览下面的相关文章希望大家以后多多支持51zixue.net!


Python基础之内置模块详解
python常见模块之OS模块和time模块
万事OK自学网:51自学网_软件自学网_CAD自学网自学excel、自学PS、自学CAD、自学C语言、自学css3实例,是一个通过网络自主学习工作技能的自学平台,网友喜欢的软件自学网站。