您当前的位置:首页 > IT编程 > python
| C语言 | Java | VB | VC | python | Android | TensorFlow | C++ | oracle | 学术与代码 | cnn卷积神经网络 | gnn | 图像修复 | Keras | 数据集 | Neo4j | 自然语言处理 | 深度学习 | 医学CAD | 医学影像 | 超参数 | pointnet | pytorch | 异常检测 | Transformers | 情感分类 | 知识图谱 |

自学教程:python爬虫请求库httpx和parsel解析库的使用测评

51自学网 2021-10-30 22:41:21
  python
这篇教程python爬虫请求库httpx和parsel解析库的使用测评写得很实用,希望能帮到您。

Python网络爬虫领域两个最新的比较火的工具莫过于httpx和parsel了。httpx号称下一代的新一代的网络请求库,不仅支持requests库的所有操作,还能发送异步请求,为编写异步爬虫提供了便利。parsel最初集成在著名Python爬虫框架Scrapy中,后独立出来成立一个单独的模块,支持XPath选择器, CSS选择器和正则表达式等多种解析提取方式, 据说相比于BeautifulSoup,parsel的解析效率更高。

今天我们就以爬取链家网上的二手房在售房产信息为例,来测评下httpx和parsel这两个库。为了节约时间,我们以爬取上海市浦东新区500万元-800万元以上的房产为例。

requests + BeautifulSoup组合

首先上场的是Requests + BeautifulSoup组合,这也是大多数人刚学习Python爬虫时使用的组合。本例中爬虫的入口url是https://sh.lianjia.com/ershoufang/pudong/a3p5/, 先发送请求获取最大页数,然后循环发送请求解析单个页面提取我们所要的信息(比如小区名,楼层,朝向,总价,单价等信息),最后导出csv文件。如果你正在阅读本文,相信你对Python爬虫已经有了一定了解,所以我们不会详细解释每一行代码。

整个项目代码如下所示:

# homelink_requests.py# Author: 大江狗 from fake_useragent import UserAgent import requests from bs4 import BeautifulSoup import csv import re import time class HomeLinkSpider(object):     def __init__(self):         self.ua = UserAgent()         self.headers = {"User-Agent": self.ua.random}         self.data = list()         self.path = "浦东_三房_500_800万.csv"         self.url = "https://sh.lianjia.com/ershoufang/pudong/a3p5/"     def get_max_page(self):         response = requests.get(self.url, headers=self.headers)         if response.status_code == 200:             soup = BeautifulSoup(response.text, 'html.parser')             a = soup.select('div[class="page-box house-lst-page-box"]')             #使用eval是字符串转化为字典格式             max_page = eval(a[0].attrs["page-data"])["totalPage"]              return max_page         else:             print("请求失败 status:{}".format(response.status_code))             return None     def parse_page(self):         max_page = self.get_max_page()         for i in range(1, max_page + 1):             url = 'https://sh.lianjia.com/ershoufang/pudong/pg{}a3p5/'.format(i)             response = requests.get(url, headers=self.headers)             soup = BeautifulSoup(response.text, 'html.parser')             ul = soup.find_all("ul", class_="sellListContent")             li_list = ul[0].select("li")             for li in li_list:                 detail = dict()                 detail['title'] = li.select('div[class="title"]')[0].get_text()                 #  2室1厅 | 74.14平米 | 南 | 精装 | 高楼层(共6层) | 1999年建 | 板楼                 house_info = li.select('div[class="houseInfo"]')[0].get_text()                 house_info_list = house_info.split(" | ")                 detail['bedroom'] = house_info_list[0]                 detail['area'] = house_info_list[1]                 detail['direction'] = house_info_list[2]                 floor_pattern = re.compile(r'/d{1,2}')                 # 从字符串任意位置匹配                 match1 = re.search(floor_pattern, house_info_list[4])                   if match1:                     detail['floor'] = match1.group()                 else:                     detail['floor'] = "未知"                 # 匹配年份                 year_pattern = re.compile(r'/d{4}')                 match2 = re.search(year_pattern, house_info_list[5])                 if match2:                     detail['year'] = match2.group()                 else:                     detail['year'] = "未知"                 # 文兰小区 - 塘桥, 提取小区名和哈快                 position_info = li.select('div[class="positionInfo"]')[0].get_text().split(' - ')                 detail['house'] = position_info[0]                 detail['location'] = position_info[1]                 # 650万,匹配650                 price_pattern = re.compile(r'/d+')                 total_price = li.select('div[class="totalPrice"]')[0].get_text()                 detail['total_price'] = re.search(price_pattern, total_price).group()                 # 单价64182元/平米, 匹配64182                 unit_price = li.select('div[class="unitPrice"]')[0].get_text()                 detail['unit_price'] = re.search(price_pattern, unit_price).group()                 self.data.append(detail)     def write_csv_file(self):         head = ["标题", "小区", "房厅", "面积", "朝向", "楼层", "年份",         "位置", "总价(万)", "单价(元/平方米)"]         keys = ["title", "house", "bedroom", "area", "direction",         "floor", "year", "location",                 "total_price", "unit_price"]         try:             with open(self.path, 'w', newline='', encoding='utf_8_sig') as csv_file:                 writer = csv.writer(csv_file, dialect='excel')                 if head is not None:                     writer.writerow(head)                 for item in self.data:                     row_data = []                     for k in keys:                         row_data.append(item[k])                         # print(row_data)                     writer.writerow(row_data)                 print("Write a CSV file to path %s Successful." % self.path)         except Exception as e:             print("Fail to write CSV to path: %s, Case: %s" % (self.path, e)) if __name__ == '__main__':     start = time.time()     home_link_spider = HomeLinkSpider()     home_link_spider.parse_page()     home_link_spider.write_csv_file()     end = time.time()     print("耗时:{}秒".format(end-start))

注意:我们使用了fake_useragent, requests和BeautifulSoup,这些都需要通过pip事先安装好才能用。

现在我们来看下爬取结果,耗时约18.5秒,总共爬取580条数据。

requests + parsel组合

这次我们同样采用requests获取目标网页内容,使用parsel库(事先需通过pip安装)来解析。Parsel库的用法和BeautifulSoup相似,都是先创建实例,然后使用各种选择器提取DOM元素和数据,但语法上稍有不同。Beautiful有自己的语法规则,而Parsel库支持标准的css选择器和xpath选择器, 通过get方法或getall方法获取文本或属性值,使用起来更方便。

 # BeautifulSoup的用法 from bs4 import BeautifulSoup soup = BeautifulSoup(response.text, 'html.parser') ul = soup.find_all("ul", class_="sellListContent")[0] # Parsel的用法, 使用Selector类 from parsel import Selector selector = Selector(response.text) ul = selector.css('ul.sellListContent')[0] # Parsel获取文本值或属性值案例 selector.css('div.title span::text').get() selector.css('ul li a::attr(href)').get() >>> for li in selector.css('ul > li'): ...     print(li.xpath('.//@href').get())

注:老版的parsel库使用extract()或extract_first()方法获取文本或属性值,在新版中已被get()和getall()方法替代。

全部代码如下所示:

 # homelink_parsel.py # Author: 大江狗 from fake_useragent import UserAgent import requests import csv import re import time from parsel import Selector class HomeLinkSpider(object):     def __init__(self):         self.ua = UserAgent()         self.headers = {"User-Agent": self.ua.random}         self.data = list()         self.path = "浦东_三房_500_800万.csv"         self.url = "https://sh.lianjia.com/ershoufang/pudong/a3p5/"     def get_max_page(self):         response = requests.get(self.url, headers=self.headers)         if response.status_code == 200:             # 创建Selector类实例             selector = Selector(response.text)             # 采用css选择器获取最大页码div Boxl             a = selector.css('div[class="page-box house-lst-page-box"]')             # 使用eval将page-data的json字符串转化为字典格式             max_page = eval(a[0].xpath('//@page-data').get())["totalPage"]             print("最大页码数:{}".format(max_page))             return max_page         else:             print("请求失败 status:{}".format(response.status_code))             return None     def parse_page(self):         max_page = self.get_max_page()         for i in range(1, max_page + 1):             url = 'https://sh.lianjia.com/ershoufang/pudong/pg{}a3p5/'.format(i)             response = requests.get(url, headers=self.headers)             selector = Selector(response.text)             ul = selector.css('ul.sellListContent')[0]             li_list = ul.css('li')             for li in li_list:                 detail = dict()                 detail['title'] = li.css('div.title a::text').get()                 #  2室1厅 | 74.14平米 | 南 | 精装 | 高楼层(共6层) | 1999年建 | 板楼                 house_info = li.css('div.houseInfo::text').get()                 house_info_list = house_info.split(" | ")                 detail['bedroom'] = house_info_list[0]                 detail['area'] = house_info_list[1]                 detail['direction'] = house_info_list[2]                 floor_pattern = re.compile(r'/d{1,2}')                 match1 = re.search(floor_pattern, house_info_list[4])  # 从字符串任意位置匹配                 if match1:                     detail['floor'] = match1.group()                 else:                     detail['floor'] = "未知"                 # 匹配年份                 year_pattern = re.compile(r'/d{4}')                 match2 = re.search(year_pattern, house_info_list[5])                 if match2:                     detail['year'] = match2.group()                 else:                     detail['year'] = "未知"                 # 文兰小区 - 塘桥    提取小区名和哈快                 position_info = li.css('div.positionInfo a::text').getall()                 detail['house'] = position_info[0]                 detail['location'] = position_info[1]                 # 650万,匹配650                 price_pattern = re.compile(r'/d+')                 total_price = li.css('div.totalPrice span::text').get()                 detail['total_price'] = re.search(price_pattern, total_price).group()                 # 单价64182元/平米, 匹配64182                 unit_price = li.css('div.unitPrice span::text').get()                 detail['unit_price'] = re.search(price_pattern, unit_price).group()                 self.data.append(detail)     def write_csv_file(self):         head = ["标题", "小区", "房厅", "面积", "朝向", "楼层",                  "年份", "位置", "总价(万)", "单价(元/平方米)"]         keys = ["title", "house", "bedroom", "area",                  "direction", "floor", "year", "location",                 "total_price", "unit_price"]         try:             with open(self.path, 'w', newline='', encoding='utf_8_sig') as csv_file:                 writer = csv.writer(csv_file, dialect='excel')                 if head is not None:                     writer.writerow(head)                 for item in self.data:                     row_data = []                     for k in keys:                         row_data.append(item[k])                         # print(row_data)                     writer.writerow(row_data)                 print("Write a CSV file to path %s Successful." % self.path)         except Exception as e:             print("Fail to write CSV to path: %s, Case: %s" % (self.path, e)) if __name__ == '__main__':     start = time.time()     home_link_spider = HomeLinkSpider()     home_link_spider.parse_page()     home_link_spider.write_csv_file()     end = time.time()     print("耗时:{}秒".format(end-start))

现在我们来看下爬取结果,爬取580条数据耗时约16.5秒,节省了2秒时间。可见parsel比BeautifulSoup解析效率是要高的,爬取任务少时差别不大,任务多的话差别可能会大些。

httpx同步 + parsel组合

我们现在来更进一步,使用httpx替代requests库。httpx发送同步请求的方式和requests库基本一样,所以我们只需要修改上例中两行代码,把requests替换成httpx即可, 其余代码一模一样。

 from fake_useragent import UserAgent import csv import re import time from parsel import Selector import httpx class HomeLinkSpider(object):     def __init__(self):         self.ua = UserAgent()         self.headers = {"User-Agent": self.ua.random}         self.data = list()         self.path = "浦东_三房_500_800万.csv"         self.url = "https://sh.lianjia.com/ershoufang/pudong/a3p5/"     def get_max_page(self):         # 修改这里把requests换成httpx         response = httpx.get(self.url, headers=self.headers)         if response.status_code == 200:             # 创建Selector类实例             selector = Selector(response.text)             # 采用css选择器获取最大页码div Boxl             a = selector.css('div[class="page-box house-lst-page-box"]')             # 使用eval将page-data的json字符串转化为字典格式             max_page = eval(a[0].xpath('//@page-data').get())["totalPage"]             print("最大页码数:{}".format(max_page))             return max_page         else:             print("请求失败 status:{}".format(response.status_code))             return None     def parse_page(self):         max_page = self.get_max_page()         for i in range(1, max_page + 1):             url = 'https://sh.lianjia.com/ershoufang/pudong/pg{}a3p5/'.format(i)              # 修改这里把requests换成httpx             response = httpx.get(url, headers=self.headers)             selector = Selector(response.text)             ul = selector.css('ul.sellListContent')[0]             li_list = ul.css('li')             for li in li_list:                 detail = dict()                 detail['title'] = li.css('div.title a::text').get()                 #  2室1厅 | 74.14平米 | 南 | 精装 | 高楼层(共6层) | 1999年建 | 板楼                 house_info = li.css('div.houseInfo::text').get()                 house_info_list = house_info.split(" | ")                 detail['bedroom'] = house_info_list[0]                 detail['area'] = house_info_list[1]                 detail['direction'] = house_info_list[2]                 floor_pattern = re.compile(r'/d{1,2}')                 match1 = re.search(floor_pattern, house_info_list[4])  # 从字符串任意位置匹配                 if match1:                     detail['floor'] = match1.group()                 else:                     detail['floor'] = "未知"                 # 匹配年份                 year_pattern = re.compile(r'/d{4}')                 match2 = re.search(year_pattern, house_info_list[5])                 if match2:                     detail['year'] = match2.group()                 else:                     detail['year'] = "未知"                 # 文兰小区 - 塘桥    提取小区名和哈快                 position_info = li.css('div.positionInfo a::text').getall()                 detail['house'] = position_info[0]                 detail['location'] = position_info[1]                 # 650万,匹配650                 price_pattern = re.compile(r'/d+')                 total_price = li.css('div.totalPrice span::text').get()                 detail['total_price'] = re.search(price_pattern, total_price).group()                 # 单价64182元/平米, 匹配64182                 unit_price = li.css('div.unitPrice span::text').get()                 detail['unit_price'] = re.search(price_pattern, unit_price).group()                 self.data.append(detail)     def write_csv_file(self):         head = ["标题", "小区", "房厅", "面积", "朝向", "楼层",                  "年份", "位置", "总价(万)", "单价(元/平方米)"]         keys = ["title", "house", "bedroom", "area", "direction",                  "floor", "year", "location",                 "total_price", "unit_price"]         try:             with open(self.path, 'w', newline='', encoding='utf_8_sig') as csv_file:                 writer = csv.writer(csv_file, dialect='excel')                 if head is not None:                     writer.writerow(head)                 for item in self.data:                     row_data = []                     for k in keys:                         row_data.append(item[k])                         # print(row_data)                     writer.writerow(row_data)                 print("Write a CSV file to path %s Successful." % self.path)         except Exception as e:             print("Fail to write CSV to path: %s, Case: %s" % (self.path, e)) if __name__ == '__main__':     start = time.time()     home_link_spider = HomeLinkSpider()     home_link_spider.parse_page()     home_link_spider.write_csv_file()     end = time.time()     print("耗时:{}秒".format(end-start))

整个爬取过程耗时16.1秒,可见使用httpx发送同步请求时效率和requests基本无差别。

注意:Windows上使用pip安装httpx可能会出现报错,要求安装Visual Studio C++, 这个下载安装好就没事了。

接下来,我们就要开始王炸了,使用httpx和asyncio编写一个异步爬虫看看从链家网上爬取580条数据到底需要多长时间。

httpx异步+ parsel组合

Httpx厉害的地方就是能发送异步请求。整个异步爬虫实现原理时,先发送同步请求获取最大页码,把每个单页的爬取和数据解析变为一个asyncio协程任务(使用async定义),最后使用loop执行。

大部分代码与同步爬虫相同,主要变动地方有两个:

     # 异步 - 使用协程函数解析单页面,需传入单页面url地址     async def parse_single_page(self, url):         # 使用httpx发送异步请求获取单页数据         async with httpx.AsyncClient() as client:             response = await client.get(url, headers=self.headers)             selector = Selector(response.text)             # 其余地方一样     def parse_page(self):         max_page = self.get_max_page()         loop = asyncio.get_event_loop()         # Python 3.6之前用ayncio.ensure_future或loop.create_task方法创建单个协程任务         # Python 3.7以后可以用户asyncio.create_task方法创建单个协程任务         tasks = []         for i in range(1, max_page + 1):             url = 'https://sh.lianjia.com/ershoufang/pudong/pg{}a3p5/'.format(i)             tasks.append(self.parse_single_page(url))         # 还可以使用asyncio.gather(*tasks)命令将多个协程任务加入到事件循环         loop.run_until_complete(asyncio.wait(tasks))         loop.close()

整个项目代码如下所示:

from fake_useragent import UserAgent import csv import re import time from parsel import Selector import httpx import asyncio class HomeLinkSpider(object):     def __init__(self):         self.ua = UserAgent()         self.headers = {"User-Agent": self.ua.random}         self.data = list()         self.path = "浦东_三房_500_800万.csv"         self.url = "https://sh.lianjia.com/ershoufang/pudong/a3p5/"     def get_max_page(self):         response = httpx.get(self.url, headers=self.headers)         if response.status_code == 200:             # 创建Selector类实例             selector = Selector(response.text)             # 采用css选择器获取最大页码div Boxl             a = selector.css('div[class="page-box house-lst-page-box"]')             # 使用eval将page-data的json字符串转化为字典格式             max_page = eval(a[0].xpath('//@page-data').get())["totalPage"]             print("最大页码数:{}".format(max_page))             return max_page         else:             print("请求失败 status:{}".format(response.status_code))             return None     # 异步 - 使用协程函数解析单页面,需传入单页面url地址     async def parse_single_page(self, url):         async with httpx.AsyncClient() as client:             response = await client.get(url, headers=self.headers)             selector = Selector(response.text)             ul = selector.css('ul.sellListContent')[0]             li_list = ul.css('li')             for li in li_list:                 detail = dict()                 detail['title'] = li.css('div.title a::text').get()                 #  2室1厅 | 74.14平米 | 南 | 精装 | 高楼层(共6层) | 1999年建 | 板楼                 house_info = li.css('div.houseInfo::text').get()                 house_info_list = house_info.split(" | ")                 detail['bedroom'] = house_info_list[0]                 detail['area'] = house_info_list[1]                 detail['direction'] = house_info_list[2]                 floor_pattern = re.compile(r'/d{1,2}')                 match1 = re.search(floor_pattern, house_info_list[4])  # 从字符串任意位置匹配                 if match1:                     detail['floor'] = match1.group()                 else:                     detail['floor'] = "未知"                 # 匹配年份                 year_pattern = re.compile(r'/d{4}')                 match2 = re.search(year_pattern, house_info_list[5])                 if match2:                     detail['year'] = match2.group()                 else:                     detail['year'] = "未知"                  # 文兰小区 - 塘桥    提取小区名和哈快                 position_info = li.css('div.positionInfo a::text').getall()                 detail['house'] = position_info[0]                 detail['location'] = position_info[1]                  # 650万,匹配650                 price_pattern = re.compile(r'/d+')                 total_price = li.css('div.totalPrice span::text').get()                 detail['total_price'] = re.search(price_pattern, total_price).group()                 # 单价64182元/平米, 匹配64182                 unit_price = li.css('div.unitPrice span::text').get()                 detail['unit_price'] = re.search(price_pattern, unit_price).group()                 self.data.append(detail)     def parse_page(self):         max_page = self.get_max_page()         loop = asyncio.get_event_loop()         # Python 3.6之前用ayncio.ensure_future或loop.create_task方法创建单个协程任务         # Python 3.7以后可以用户asyncio.create_task方法创建单个协程任务         tasks = []         for i in range(1, max_page + 1):             url = 'https://sh.lianjia.com/ershoufang/pudong/pg{}a3p5/'.format(i)             tasks.append(self.parse_single_page(url))         # 还可以使用asyncio.gather(*tasks)命令将多个协程任务加入到事件循环         loop.run_until_complete(asyncio.wait(tasks))         loop.close()     def write_csv_file(self):         head = ["标题", "小区", "房厅", "面积", "朝向", "楼层",                 "年份", "位置", "总价(万)", "单价(元/平方米)"]         keys = ["title", "house", "bedroom", "area", "direction",                 "floor", "year", "location",                 "total_price", "unit_price"]         try:             with open(self.path, 'w', newline='', encoding='utf_8_sig') as csv_file:                 writer = csv.writer(csv_file, dialect='excel')                 if head is not None:                     writer.writerow(head)                 for item in self.data:                     row_data = []                     for k in keys:                         row_data.append(item[k])                     writer.writerow(row_data)                 print("Write a CSV file to path %s Successful." % self.path)         except Exception as e:             print("Fail to write CSV to path: %s, Case: %s" % (self.path, e))  if __name__ == '__main__':     start = time.time()     home_link_spider = HomeLinkSpider()     home_link_spider.parse_page()     home_link_spider.write_csv_file()     end = time.time()     print("耗时:{}秒".format(end-start))

现在到了见证奇迹的时刻了。从链家网上爬取了580条数据,使用httpx编写的异步爬虫仅仅花了2.5秒!!

对比与总结

爬取同样的内容,采用不同工具组合耗时是不一样的。httpx异步+parsel组合毫无疑问是最大的赢家, requests和BeautifulSoup确实可以功成身退啦。

  • requests + BeautifulSoup: 18.5 秒
  • requests + parsel: 16.5秒
  • httpx 同步 + parsel: 16.1秒
  • httpx 异步 + parsel: 2.5秒

对于Python爬虫,你还有喜欢的库吗?

以上就是python爬虫请求库httpx和parsel解析库的使用测评的详细内容,更多关于python httpx和parsel的资料请关注51zixue.net其它相关文章!


Python 中数组和数字相乘时的注意事项说明
Python超简单容易上手的画图工具库推荐
万事OK自学网:51自学网_软件自学网_CAD自学网自学excel、自学PS、自学CAD、自学C语言、自学css3实例,是一个通过网络自主学习工作技能的自学平台,网友喜欢的软件自学网站。